1. A (very large) population of rabbits and foxes is living together in a forest. Let \(R(t) \) and \(F(t) \) be the number of rabbits and foxes at time \(t \). Since foxes enjoy meeting rabbits but not vice versa, we can model the population by the system of equations

\[
\begin{align*}
\frac{dR}{dt} &= aR - bRF \\
\frac{dF}{dt} &= cF + dRF
\end{align*}
\]

where \(a, b, c, d > 0 \).

(a) Explain the meaning of each of the terms on the right-hand sides.

(b) Treat \(R \) as a function of \(F \) and find an ODE for \(R(F) \).

(c) Solve the ODE.

2. (a) Using a step size of \(h = 1 \), numerically solve the initial value problem

\[
y' = 2x + y - x^2, \quad y(0) = 0, \quad 0 \leq x \leq 2
\]

using the modified Euler method.

(b) Derive the exact solution and use this to determine the errors in your approximations.

3. Find all solutions to the ODE

\[
yy'' = (y')^2 + ay'
\]

where \(a \) is an arbitrary real parameter.

4. Solve the ODE

\[
y'' - 3y' + 2y = 4e^{-x} \cos(2x).
\]

5. Solve the ODE

\[
(1 + x^2)y'' - 2xy' + 2y = (1 + x^2)^2.
\]

Hint: You have to “guess” a solution to the homogeneous ODE.