1. (a) The text is first converted to the numbers:

7 34 52 9 26 39 53

(You can use the table on page 1.10.8 of the notes to help with this step.)

These are encrypted using $x \rightarrow x^e \pmod{m}$, i.e. $x \rightarrow x^{17} \pmod{143}$. Using the function binarypow() in MATLAB gives:

50 34 13 81 104 52 92

A quick way to do the calculation is the following:

```
>> x = [ 7 34 52 9 26 39 53 ]
>> y=[];
>> for i=1:7
   > y(i)= binarypow(x(i),17,143);
>> end
>> y
```

(b) $m = 143 = 11 \times 13$ hence $\phi(m) = 10 \times 12 = 120$

(c) (i) We use Euclid’s algorithm to find $x, y \in \mathbb{Z}$ such that $17x + 120y = 1$.
 We have $120 = 7 \times 17 + 1$, so $1 = -7 \times 17 + 1 \times 120$ and $-7 \times 17 \equiv 1 \pmod{120}$.
 Hence we can take $d = -7$ or 113 (since $-7 \equiv 113 \mod{120}$).

(ii) We decrypt each number in the message

112 23 15 137 105 44 67 92

by $x \rightarrow x^d \pmod{m}$, i.e. $x \rightarrow x^{113} \pmod{143}$.

Using binarypow() as above gives:

8 56 38 37 40 44 45 53

Converting to text, gives the message:

I’m lost.

2. To test for linear dependence, we solve the equation $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = 0$ where $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$. Writing the vectors as columns of a matrix and reducing to row echelon form gives:

$$
\begin{bmatrix}
1 & 2 & 9 \\
-1 & 5 & 5 \\
3 & -1 & 13
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & 9 \\
0 & 7 & 14 \\
0 & 8 & 16
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & 9 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{bmatrix}
$$

Since rank < 3, the system of linear equations has \textbf{non-zero solutions}, so the vectors are \textbf{linearly dependent}.

From the final reduced row echelon form, we see that $\alpha_3 = -1, \alpha_2 = 2, \alpha_1 = 5$ is one solution. Thus $2v_1 + 5v_2 - 1v_3 = 0$ or $v_3 = 5v_1 + 2v_2$, i.e.

$(9, 5, 13, 7) = 5(1, -1, 3, -1) + 2(2, 5, -1, 6)$.
3. (a) We prove that $$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y - 2z - w = 0\}$$ is a subspace of $$\mathbb{R}^4$$ by checking the three subspace properties.

(0) $$S$$ is not empty: For example, it contains $$(0, 0, 0, 0)$$.

(1) $$S$$ is closed under addition: Let $$v_1 = (x_1, y_1, z_1, w_1)$$ and $$v_2 = (x_2, y_2, z_2, w_2)$$ be arbitrary vectors in $$S$$. Then we have $$x_1 + y_1 - 2z_1 - w_1 = 0$$ since $$v_1 \in S$$ and $$x_2 + y_2 - 2z_2 - w_2 = 0$$ since $$v_2 \in S$$. Now

$$v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x, y, z, w)$$

has coordinates satisfying

$$x + y - 2z - w = (x_1 + x_2) + (y_1 + y_2) - 2(z_1 + z_2) - (w_1 + w_2)$$

$$= (x_1 + y_1 - 2z_1 - w_1) + (x_2 + y_2 - 2z_2 - w_2)$$

$$= 0 + 0 = 0.$$

Thus $$v_1 + v_2 \in S$$.

(2) $$S$$ is closed under scalar multiplication: Let $$v_1 = (x_1, y_1, z_1, w_1) \in S$$ and $$\alpha \in \mathbb{R}$$. Then

$$\alpha v_1 = (\alpha x_1, \alpha y_1, \alpha z_1, \alpha w_1) = (x, y, z, w)$$

has coordinates satisfying

$$x + y - 2z - w = \alpha x_1 + \alpha y_1 - 2(\alpha z_1) - (\alpha w_1) = \alpha(x_1 + y_1 - 2z_1 - w_1) = \alpha 0 = 0.$$

Thus $$\alpha v_1 \in S$$.

Since (0), (1), (2) are satisfied, we conclude that $$S$$ is a subspace of $$\mathbb{R}^4$$.

(b) $$T = \{(x, y) \in \mathbb{R}^2 : y^2 - x^2 = 0\}$$ is not a subspace of $$\mathbb{R}^2$$ since it is not closed under addition. For example, $$v = (1, 1) \in T$$ and $$w = (1, -1) \in T$$ but $$v + w = (2, 0) \notin T$$.

4. We can use the “Powerful Facts” on page II.7.4 of the notes.

(a) Any linearly independent set in the 2-dimensional space $$\mathbb{R}^2$$ contains at most 2 vectors. So the given 3 vectors are not linearly independent.

(b) Any spanning set for the 4-dimensional space $$\mathbb{R}^4$$ contains at least 4 vectors, hence the given 3 vectors do not span $$\mathbb{R}^4$$.

(Alternatively: both parts can be done by writing the vectors as columns of a matrix and using row reduction as in Q2 and Q5.)

5. (a) We must check whether $$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = v$$ has a solution for all $$v = (a, b, c) \in \mathbb{R}^3$$. We write the vectors $$v_1, v_2, v_3$$ as columns of a matrix and reduce to row echelon form:

$$\begin{bmatrix} 2 & 1 & 3 \\ -1 & 4 & -1 \\ 4 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 \\ 2 & 1 & 3 \\ 4 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 \\ 0 & 9 & 1 \\ 0 & 18 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 \\ 0 & 9 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Since the rank of this matrix is 3, we conclude that the vectors span $$\mathbb{R}^3$$.

(Alternatively: Start with an augmented matrix

$$\begin{bmatrix} 2 & 1 & 3 & | & a \\ -1 & 4 & -1 & | & b \\ 4 & 2 & 3 & | & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 & | & b \\ 0 & 9 & 1 & | & a + 2b \\ 0 & 0 & -3 & | & c - 2a \end{bmatrix}.$$ and conclude that the corresponding linear system has a solution for all $$a, b, c \in \mathbb{R}$$.

(b) Since we have a spanning set containing 3 vectors and $$\dim \mathbb{R}^3 = 3$$, the vectors do give a basis for $$\mathbb{R}^3$$ by the “Powerful Facts” on page II.7.4 of the notes.

(Alternatively: the row reduction above shows that the vectors are linearly independent, so form a basis.)