1. (a) Find the largest open region in which the complex series
\[\sum_{n=0}^{\infty} \left[\left(-\frac{1}{z} \right)^n + \left(\frac{z}{2} \right)^n \right] \]
converges and find its sum.

(b) Find the circle of convergence for each of the complex power series:

\[\begin{align*}
(i) & \quad \sum_{n=1}^{\infty} \frac{2 + i^n}{2^n} (z - 1)^n; \\
(ii) & \quad \sum_{n=1}^{\infty} \frac{n^n}{n!} z^n.
\end{align*} \]

For the second series it may be helpful to show \(\lim_{n \to \infty} \frac{(n + 1)^{n+1}}{(n + 1)!} / \frac{n^n}{n!} = e \).

1. Solution.

(a) The series \(S = \sum_{n=0}^{\infty} \left[\left(-\frac{1}{z} \right)^n + \left(\frac{z}{2} \right)^n \right] \) converges if and only if BOTH \(S_1 = \sum_{n=0}^{\infty} \left(-\frac{1}{z} \right)^n \) and \(S_2 = \sum_{n=0}^{\infty} \left(\frac{z}{2} \right)^n \) converge.

The series \(S_1 \) is a geometric series and converges to \(\frac{1}{1 - \left(-\frac{1}{z} \right)} \) provided \(\left| \frac{1}{z} \right| < 1 \), that is \(|z| > 1 \).

The series \(S_2 \) is also geometric and converges to \(\frac{1}{1 - \left(\frac{z}{2} \right)} \) provided \(\left| \frac{z}{2} \right| < 1 \) that is \(|z| < 2 \).

So the series \(S \) converges when \(|z| > 1 \) and \(|z| < 2 \) (that is \(1 < |z| < 2 \)) to
\[\frac{1}{1 - \left(-\frac{1}{z} \right)} + \frac{1}{1 - \left(\frac{z}{2} \right)} = \frac{z}{z+1} + \frac{2}{2 - z} = \frac{z^2 - 4z - 2}{(z+1)(z-2)}. \]

(b) Find the circle of convergence for each of the complex power series:

(i) \(\sum_{n=1}^{\infty} \frac{2 + i^n}{2^n} (z - 1)^n; \)

Now \(|2 + i^n| = \begin{cases}
1 & \text{if } n = 4m + 2 \\
\sqrt{5} & \text{if } n = 4m + 1 \\
3 & \text{if } n = 4m
\end{cases} \)

Using the root test \(\lim_{n \to \infty} \left| \frac{2 + i^n}{2^n} (z - 1)^n \right|^{1/n} = \left| \frac{z - 1}{2} \right| \lim_{n \to \infty} |2 + i^n|^{1/n} = \)
\[\left| \frac{z - 1}{2} \right|. \] As

\[1^{1/n} \leq |2 + i^n|^{1/n} \leq \sqrt{3}^{1/n} \text{ for all } n \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

hence \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \text{by the sandwich rule.}

From which we see that we have convergence for \(|z - 1| < 2\).

(ii) \[\sum_{n=1}^{\infty} \frac{n^n}{n!} z^n. \]

We first show that \[\lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \frac{n^n}{n!} = e. \]

\[\frac{(n+1)^{n+1}}{(n+1)!} \frac{n^n}{n!} = \frac{n+1}{n} \frac{(n+1)^n}{(n)!} \frac{n^n}{n!} = \left(\frac{n+1}{n} \right)^n. \]

So \[\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e. \]

Using the ratio test on the series: \[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1}}{(n+1)!} z^{n+1} \frac{n^n}{n!} \right| = |z| \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \frac{n^n}{n!} = e|z| \]

So the series converges if \(|z| < 1/e\).

2. (a) Using the Weierstrass M-test show that \[\sum_{n=1}^{\infty} (3n)z^{3n} \] converges uniformly on \(|z| \leq r < 1\).

(b) Show that \[\sum_{n=1}^{\infty} (3n)z^{3n-1} = \frac{d}{dz} \left(\frac{1}{1 - z^3} \right) \] on \(|z| \leq r < 1\).

(c) With justification find a function \(f(z)\) that has Taylor series \[\sum_{n=1}^{\infty} (3n)z^{3n} \] about \(|z| \leq r < 1\).

(d) Hence or otherwise find the sum of the series \[\sum_{n=1}^{\infty} (3n)(\frac{1}{2})^{3n}. \]

2. Solution.

(a) \((3n)z^{3n} < (3n)r^{3n} \) for all \(|z| \leq r < 1\). Now \[\sum_{n=1}^{\infty} (3n)r^{3n} \] converges by the ratio test as \[\lim_{n \to \infty} \frac{(3n+3)r^{3n+3}}{(3n)r^{3n}} = r^3 < 1. \]

So by the Weierstrass M-test the series converges uniformly for \(|z| \leq r < 1\).
(b) Now \(\frac{1}{1-z^3} = \sum_{n=0}^{\infty} z^{3n} \) for \(z < 1 \) as the series is geometric. Differentiating termwise we obtain \(\frac{d}{dz} \left(\frac{1}{1-z^3} \right) = \sum_{n=1}^{\infty} (3n)z^{3n-1} \) provided the series on the right converges uniformly, which it does for \(z \leq r < 1 \). (Using the Weierstrass M-test gives uniform convergence in any closed subdisk of the disk of convergence.)

(c) From above we have \(\sum_{n=1}^{\infty} (3n)z^{3n-1} = \frac{d}{dz} \left(\frac{1}{1-z^3} \right) = \frac{3z^2}{(1-z^3)^2} \) on \(|z| \leq r < 1 \). So multiplying both sides by \(z \) (strictly speaking on the LHS we are finding the Cauchy product of two series one of which is the single term series \(z \)) we see that \(\sum_{n=1}^{\infty} (3n)z^{3n} = \frac{3z^3}{(1-z^3)^2} \) provided \(|z| \leq r < 1 \).

Now the power series is the same as the Taylor series (provided the centres match) of the function the power series converges to, that is the function is \(\frac{3z^3}{(1-z^3)^2} \).

(d) Thus the sum of the series \(\sum_{n=1}^{\infty} (3n)(\frac{1}{2})^{3n} \) is \(\frac{3z^3}{(1-z^3)^2} \bigg|_{z=1/2} = \frac{24}{49} \) as \(z = 1/2 \) is within the domain \(|z| \leq r < 1 \). (E.g. choose \(r = 3/4 \))

3. Let \(f(z) = \frac{1}{(z-1)(2z-1)} \).

(a) Find Laurent series expansions for \(f(z) \) valid for:

(i) \(0 < |z - 1| < \frac{1}{2} \); (ii) \(\frac{1}{2} < |z - 1| \).

(b) Write down (with brief justification) or calculate \(\text{Res}(f,1) \)

(c) Hence use residue calculus to calculate

\[\oint_{|z-1|=1/4} f(z)dz. \]

3. Solution.

(a) (i) For computational simplicity \(w = z - 1 \) (\(\iff z = w + 1 \)),

so \(f(w) = \frac{1}{w(1+2w)} \).

We find the McLaurin series for \(1/(1+2w) \) using geometric series.

\[\frac{1}{1+2w} = 1 - 2w + 4w^2 - 8w^3 \ldots = \sum_{n=0}^{\infty} (-2)^n w^n \] valid for \(|w| < 1/2 \). We
now multiply by $1/w$ to get the Mclaurin series for $f(w)$ (strictly speaking we are using the Cauchy product once again).

$$f(w) = 1/w - 2 + 4w - 8w^2 \ldots = \sum_{n=1}^{\infty} (-2)^{n+1} w^n,$$

for $0 < |w| < 1/2$. (Note we now need $w \neq 0$.) Back substitution for w gives

$$f(z) = \sum_{n=1}^{\infty} (-2)^{n+1} (z - 1)^n,$$

for $0 < |z - 1| < 1/2$.

(ii) We proceed as in (i) except we generate a series converging to $f(w)$ for $|w| > 1/2$ by expanding $1/(1 + 2w)$ ‘inside out’.

$$\frac{1}{1+2w} = \frac{1/(2w)}{1 + 1/(2w)} = \frac{1}{2w} - \left(\frac{1}{2w}\right)^2 + \left(\frac{1}{2w}\right)^3 \ldots = \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{2}\right)^n w^{-n},$$

for $|w^{-1}| < 2 \iff |w| > 1/2$. So multiplying by $1/w$ and back substituting for w results in

$$f(z) = \frac{1}{2} (z - 1)^{-2} - \left(\frac{1}{2}\right)^2 (z - 1)^{-3} \ldots = \sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{2}\right)^{n-1} (z - 1)^{-n}$$

for $|z - 1| > 1/2$.

(b) $\text{Res}(f; 1)$ is the coefficient of $(z - 1)^{-1}$ in a Laurent expansion for $f(z)$ valid in a punctured disk about $z = 1$. From (i) $f(z) = \sum_{n=1}^{\infty} (-2)^{n+1} (z - 1)^n,$

for $0 < |z - 1| < 1/2$ in the appropriate Laurent series expansion. By inspection $(n = -1) \text{Res}(f; 1) = 1$

(c) $f(z)$ has two singularities at $z = 1$ and $z = 1/2$, of these only $z = 1$ is interior to the contour $|z - 1| = 1/4$. Thus

$$\oint_{|z-1|=1/4} f(z)dz = 2\pi i \text{Res}(f; 1) = 2\pi i.$$

4. Find and classify singularities, and calculate the residue at isolated singularities, for the following functions:

(a) $\frac{(z - 1)^3}{(z + 1)z}$;
(b) $\frac{\sin z}{(z - \pi)}$;

(c) $\frac{(z - 2)}{(z - 1)^4}$;
(d) $\frac{\text{Log}(2z)}{(z - 1)}$ (Principal branch).

4. Solution.

(a) $\frac{(z - 1)^3}{(z + 1)z}$ has singularities at $z = -1$ and $z = 0$. These are both simple poles as the roots of multiplicity 1 of the denominator. If η is a simple pole of $f(z)$ $\text{Res}(f; \eta) = \lim_{z \to \eta} (z - \eta)f(z)$. So $\text{Res}(f; 0) = \lim_{z \to 0}(z - 0)f(z) = \frac{(z-1)^3}{(z+1)} \bigg|_{z=0} = -1$ likewise $\text{Res}(f; -1) = \lim_{z \to -1}(z + 1)f(z) = \frac{(z-1)^3}{z} \bigg|_{z=-1} = 8.$
5. (a) Calculate the residues at the poles in the upper half plane of $f(z) = \frac{1}{(z^2 + 1)^2}$.

(b) Using an appropriate contour in the complex plane and appropriate justification calculate the real integral

$$
\int_0^\infty \frac{1}{(1+x^2)^2}dx.
$$

COMMENT ONLY – no work needed here:

A crude upper bound $0 < \int_0^\infty \frac{1}{(1+x^2)^2}dx < \int_0^\infty \frac{1}{1+x^2}dx = \frac{\pi}{2}$.

5. Solution.

(a) $\frac{1}{(z^2 + 1)^2}$ has double poles at $z = i$ and $z = -i$. We are interested in the residue at $z = i$.

(b) $\frac{\sin z}{(z-\pi)}$ has a singularity at $z = \pi$. This singularity is removable as

$$
\lim_{z\to\pi} \frac{\sin z}{z-\pi} = \lim_{z\to\pi} \frac{\cos z}{1} = -1 \text{ by L'Hopital's rule.}
$$

Alternatively it appears to be a simple pole. If it were: Res$(f; \pi) = \lim_{z\to\pi} (z-\pi)f(z) = \sin z|_{z=\pi} = 0$.

This means the Laurent series of $f(z)$ about π has no powers of $(z-\pi)$ beyond $(z-\pi)^{-1}$ in the negative direction. But $(z-\pi)^{-1}$ has coefficient 0, thus the Laurent series is in fact a Taylor series (no -ve powers of $(z-\pi)$) and the singularity is removable.

(c) $\frac{(z-2)}{(z-1)^4}$ has a pole of order 4 at $z = 1$.

Res$(f; 1) = \frac{1}{3!} \lim_{z\to1} \frac{d^3}{dz^3} (z-2)^4 (z-1)^4 = \frac{1}{3!} \lim_{z\to1} \frac{d^3}{dz^3} (z-2) = 0$

Alternatively for 'series zealots' $z-2 = (z-1) - 1$ thus $\frac{(z-2)}{(z-1)^4} = -1((z-1)^{-4} + (z-1)^{-3}$ is a Laurent series expansion (valid for $0 < |z-1|$) giving Res$(f; 1) = 0$ as there is no $(z-1)^{-1}$ term in the expansion.

(d) $\frac{\log(2z)}{(z-1)}$ has a simple pole at $z = 1$ a branch point at $z = 0$ and for the principal branch a branch cut along the negative real axis. Note the branch point and points on the branch cut are NOT ISOLATED singularities.

Res$(f; 1) = \log(2z)|_{z=1} = \log 2$ (the real log of 2).
This is \((m = 2)\)
\[
\frac{1}{1!} \lim_{z \to -i} \frac{d}{dz} \frac{(z - i)^2}{(z^2 + 1)^2} = \lim_{z \to -i} \frac{d}{dz} \frac{1}{(z^2 + 1)^2} = \lim_{z \to -i} -2 \frac{1}{(z + i)^3} = \frac{-2}{-8i} = \frac{1}{4i}.
\]

(b) Now \(\int_0^\infty \frac{1}{(1 + x^2)^2} \, dx = \lim_{R \to \infty} \int_0^R \frac{1}{(1 + x^2)^2} \, dx = \frac{1}{2} \lim_{R \to \infty} \int_{-R}^R \frac{1}{(1 + x^2)^2} \, dx\)
as the integrand is an even function of \(x\).
Let \(\Gamma_R = \gamma_R + C_R\) where \(\gamma_R\) is from \(-R\) to \(R\) along the real axis and \(C_R\) is the positively oriented semi circular arc in the upper half plane running from \(R\) to \(-R\). or more explicitly
\[
\gamma_R : \quad z(t) = -R + 2Rt \quad \text{for} \quad t \in [0, 1]
\]
\[
C_R : \quad z(t) = Re^{it} \quad \text{for} \quad t \in [0, \pi].
\]
We note/show

- \(\int_{\gamma_R} \frac{1}{(z^2 + 1)^2} \, dz = \int_{-R}^{R} \frac{1}{(1 + x^2)^2} \, dx.\)
- \(\lim_{R \to \infty} \int_{C_R} \frac{1}{(z^2 + 1)^2} \, dz = 0.\)

(If \(R > 1\)) and \(z\) on \(C_R (\Rightarrow |z| = R)\) then \(|\int_{\Gamma} f(z) \, dz| \leq M|\Gamma|\) for any \(f(z)\). So in our case
\[
|\int_{C_R} \frac{1}{(z^2 + 1)^2} \, dz| \leq \frac{\pi R}{(R^2 - 1)^2} \to 0 \quad \text{as} \quad R \to \infty.
\]
Thus \(2 \int_0^\infty \frac{1}{(1 + x^2)^2} \, dx = \lim_{R \to \infty} \int_{\gamma_R} \frac{1}{(z^2 + 1)^2} \, dz.\)
As \(R\) goes to \(\infty\) the contour \(\Gamma_R\) includes all singularities in the upper half plane.
So by residue calculus \(\lim_{R \to \infty} \int_{\Gamma_R} \frac{1}{(z^2 + 1)^2} \, dz = 2\pi i \text{Res} \left(\frac{1}{(z^2 + 1)^2}, i \right) = \frac{2\pi i}{4i} = \frac{\pi}{2}.\)
Giving \(\int_0^\infty \frac{1}{(1 + x^2)^2} \, dx = \frac{\pi}{4}.\)
Which lies between 0 and \(\pi/2\) as it must by our crude bound.