1. Evaluate the following if they exist
 (a) \((1 + \sqrt{3}i)^{3/4}\)
 (b) \(\lim_{z \to \pi i/2} \text{Log}(\sinh(z))\)
 (c) \(\lim_{z \to 0} \text{Log}(z)\)
 (d) \(\lim_{z \to \pi} \frac{(z - \pi) e^{iz}}{\sin z}\)
 (e) \((-2i)^{-2i}\) (principal value)

1. Solution.
 (a) \((1 + \sqrt{3}i) = 2e^{i\pi/3}\) so \((1 + \sqrt{3}i)^3 = 8e^{3i\pi/3} = 8e^{i\pi}\) thus \((1 + \sqrt{3}i)^{3/4} = \sqrt[3]{8} e^{i\pi/4}, \sqrt[3]{8} e^{3i\pi/4}, \sqrt[3]{8} e^{-i\pi/4}, \sqrt[3]{8} e^{-3i\pi/4}\).
 (b) Now \(\sinh z\) is entire (hence continuous at \(z = \pi i/2\) thus \(\lim_{z \to \pi i/2} \sinh(z) = \sinh(\pi i/2) = e^{i\pi/2} - e^{-i\pi/2} = i\). The principal branch of \(\text{Log}\) is analytic at \(z = i\) so by continuity \(\lim_{z \to \pi i/2} \text{Log}(\sinh(z)) = \text{Log}(i) = \frac{i\pi}{2}\)
 (c) \(\lim_{z \to 0} \text{Log}(z)\) does not exist as \(\text{Log} z\) is unbounded as \(z \to 0\) as can be seen by \(|\text{Log}(e^{-n})| = n\) where \(e^{-n} \to 0\) as \(n \to \infty\).
 (d) \(\lim_{z \to \pi} \frac{(z - \pi)}{\sin z}\) is of the form \(0/0\) as \(\sin \pi = 0\) and \((\pi - \pi) = 0\). So evaluating \(\lim_{z \to \pi} \frac{(z - \pi)}{\sin z}\) using L’hopital’s Rule we obtain \(\lim_{z \to \pi} \frac{(z - \pi) e^{iz}}{\sin z} = \frac{d}{dz} \frac{(z - \pi)}{\sin z} |_{z = \pi} = -1\). Also by continuity \(\lim_{z \to \pi} e^{iz} = e^{i\pi} = -1\), thus \(\lim_{z \to \pi} e^{iz} \times -1 = -1 \times -1 = 1\).
 (e) \((-2i)^{-2i} = \exp(-2i \text{Log}(-2i)) = \exp(-2i(\log 2 - i\pi/2)) = \exp(-\pi - i \log 4) = e^{-\pi} e^{-i \log 4}\).

2. We are using \(\epsilon - \delta\) methods to show that \(\lim_{z \to 2} (z^2 - 1) = 3\).
 (a) Show that \(|z - 2| < \min(\frac{\epsilon}{3}, 1) \Rightarrow |(z^2 - 1) - 3| < \epsilon\).
 (b) Find a natural number \(K\) so that \(|z - 2| < \min(\frac{\epsilon}{K}, 2) \Rightarrow |(z^2 - 1) - 3| < \epsilon\).
2. **Solution.**

(a) Let \(w = z - 2 \), so \(z = w + 2 \) substituting gives \(z^2 - 1 - 3 = (w + 2)^2 - 4 = w^2 + 4w \) thus if \(|z - 2| = |w| < \min \left(\frac{\epsilon}{5}, 1 \right) \) then \(|w| < 1 \) and \(|w| < \epsilon/5 \). So \(|(z^2 - 1) - 3| = |w^2 + 4w| = |w||w + 4| \leq |w|(|w| + 4) < \epsilon/5(1 + 4) = \epsilon \) the desired result.

(b) Using \(|w^2 + 4w| = |w||w + 4| \leq |w|(|w| + 4) \) again \(|w| < \min \left(\frac{\epsilon}{K}, 2 \right) \) means \(|w| < 2 \) regardless of the value of \(K \) so \((|w| + 4) < 2 + 4 = 6 \) so if \(|w| < \epsilon/6 \) also we have \(|w^2 + 4w| < (\epsilon/6) \times 6 = \epsilon \) so any \(K \geq 6 \) does the trick.

Note that no smaller value of \(K \) will work. For example if \(K \leq 5 \) then 3.99 satisfies \(|2 - 3.99| < \min(2, 10/K) \) \((\epsilon = 10) \) but \(|(3.99^2) - 1 - 3| > 11.84 > 10 = \epsilon \)!

3. **Let** \(u(x, y) = -8x^3y + 8xy^3 \).

 (a) **Show that** \(u(x, y) \) **is harmonic on** \(\mathbb{R}^2 \).

 (b) **Find a harmonic conjugate** \(v(x, y) \) **for** \(u(x, y) \).

 (c) **Hence find an entire function** \(f(z) \) **such that** \(\text{Real}(f(x + iy)) = u(x, y) \). **Write** \(f(z) \) **in terms of** \(z \).
3. Solution.

(a) Note that \(u(x, y) \) is a polynomial in \(x \) and \(y \) and is thus \(C^\infty \) and \(C^2 \) in particular.

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} (-24x^2y + 8y^3) = -48xy.
\]

\[
\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} (-8x^3 + 24xy^2) = 48xy.
\]

Thus \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -48xy + 48xy = 0 \), so \(u(x, y) \) is harmonic.

(b) \(\frac{\partial u}{\partial x} = -24x^2y + 8y^3 \) so \(\frac{\partial v}{\partial y} = -24x^2y + 8y^3 \) so \(v = -12x^2y^2 + 2y^4 + h(x) \).

Differentiating partially with respect to \(x \) \(\frac{\partial v}{\partial x} = -24xy^2 + h'(x) = -\frac{\partial u}{\partial y} = 8x^3 - 24xy^2 \) so \(h'(x) = 8x^3 \Rightarrow h(x) = 2x^4 + c \). Thus the function

\[
v(x, y) = 2x^4 - 12x^2y^2 + 2y^4 + c
\]

is a harmonic conjugate.

(c) So

\[
f(z) = f(x + iy) = (-8x^3y + 8xy^3) + i(2x^4 - 12x^2y^2 + 2y^4)
\]

\[
= 2i(x^4 + 4x^3y + 6i^2x^2y^2 + 4i^3xy^3 + i^4y^4)
\]

\[
= 2i(x + iy)^4
\]

\[
= 2iz^4
\]

4. (a) Using the complex exponential definitions of \(\sin, \cosh, \sinh \) and \(\cos \) show that if \(z = x + iy \) then

\[
\cos z = \cos x \cosh y - i \sin x \sinh y.
\]

(b) Hence (or otherwise) show that

\[
|\cos z| = \sqrt{\cos^2 x + \sinh^2 y}.
\]

(c) Find all the solutions \(z \in \mathbb{C} \) to

\[
\cos z = 0.
\]
4. Solution.

(a)
\[
\cos x \cosh y - i \sin x \sinh y = \left(\frac{e^{ix} + e^{-ix}}{2}\right) \left(\frac{e^{iy} + e^{-iy}}{2}\right) - i \left(\frac{e^{ix} - e^{-ix}}{2i}\right) \left(\frac{e^{iy} - e^{-iy}}{2}\right)
\]
\[
= \frac{1}{4} \left(\left[e^{ix+y} + e^{ix-y} + e^{-ix+y} + e^{-ix-y}\right]
- \left[e^{ix+y} - e^{ix-y} - e^{-ix+y} + e^{-ix-y}\right]\right)
\]
\[
= \frac{1}{4} \left(\left[e^{ix+y} + e^{ix-y} + e^{-ix+y} + e^{-ix-y}\right]
- \left[e^{ix+y} - e^{ix-y} - e^{-ix+y} + e^{-ix-y}\right]\right)
\]
\[
= \frac{1}{2} \left(e^{ix-y} + e^{-ix+y}\right)
= \left(e^{iz} + e^{-iz}\right)/2
= \cos z
\]

(b) As \(|u(x, y) + iv(x, y)| = (u^2(x, y) + v^2(x, y))^{1/2}\) we see that
\[
|\cos z| = \sqrt{(\cos x \cosh y)^2 + (\sin x \sinh y)^2}
= \sqrt{\cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y}
= \sqrt{\cos^2 x (\sinh^2 y + 1) + \sin^2 x \sinh^2 y}
= \sqrt{(\cos^2 x + \sin^2 x) \sinh^2 y + \cos^2 x}
= \sqrt{\cos^2 x + \sinh^2 y}.
\]

(c) Now \(\cos z = 0 \Rightarrow |\cos z| = 0 \Rightarrow \cos^2 x + \sinh^2 y = 0 \Rightarrow \cos x = 0 \& \sinh y = 0\). Thus \(y = 0\) and \(x = \frac{2n+1}{2} \pi \ n \in \mathbb{Z}\) giving \(z = \frac{2n+1}{2} \pi \ n \in \mathbb{Z}\). Thus extending the domain of \(\cos\) from \(\mathbb{R}\) to \(\mathbb{C}\) introduces no more zeros!
5. Our aim in this question is to show that Log z (the principal branch) is analytic on the domain

$$D = \{ z \in \mathbb{C} : \text{Im}(z) = 0 \Rightarrow \text{Re}(z) > 0 \} = \{ x+iy : x \in \mathbb{R}, y \in \mathbb{R} \text{ with } y = 0 \text{ only if } x > 0 \}.$$

If $z = re^{i\theta} - \pi < \theta < \pi$ then

$$\text{Log}(x + iy) = \text{Log} z = \log r + i\theta = u(x, y) + iv(x, y)$$

where

$$u(x, y) = \frac{1}{2} \log(x^2 + y^2)$$

and

$$v(x, y) = \begin{cases}
\arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) & y > 0 \\
0 & y = 0 \\
-\arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) & y < 0
\end{cases}$$

(a) Using (without verification) $\frac{d}{dt} \arccos t = -\frac{1}{\sqrt{1-t^2}}$, show that:

(i) $\frac{\partial}{\partial x} \arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = -\frac{|y|}{(x^2 + y^2)}$ note $|y| = \sqrt{y^2}$;

(ii) $\frac{\partial}{\partial y} \arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{xy}{|y|(x^2 + y^2)}.$

(b) Note that if $x + iy$ in D then $\lim_{y \to 0} \arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = 0$. So we can have the region $y > 0$ ‘creep’ to $y \geq 0$ and $y < 0$ ‘creep’ to $y \leq 0$.

In domain D, carefully evaluate:

(i) $\frac{\partial v}{\partial x}$;

(ii) $\frac{\partial v}{\partial y}$.

(c) In domain D, verify that:

(i) the Cauchy-Riemann equations hold;

(ii) the functions u and v are C^1.

(d) Justify the analyticity of Log on domain D.
5. Solution.

(a) (i)

\[
\frac{\partial}{\partial x} \arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \\
= \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \times -1/\sqrt{1 - x^2/(x^2 + y^2)} \\
= \left(\frac{(x^2 + y^2)^{1/2} - 1/2 \times 2x \times (x^2 + y^2)^{-1/2}}{x^2 + y^2} \right) \times -\frac{1}{|y|} (x^2 + y^2)^{1/2} \\
= \left(\frac{(x^2 + y^2) - x^2}{(x^2 + y^2)^{3/2}} \right) \times -\frac{1}{|y|} (x^2 + y^2)^{1/2} \\
= -\frac{|y|^2}{|y|} \frac{1}{x^2 + y^2} \\
= -\frac{|y|}{(x^2 + y^2)}
\]

(ii)

\[
\frac{\partial}{\partial y} \arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \\
= \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) \times -1/\sqrt{1 - x^2/(x^2 + y^2)} \\
= \left(-1/2 \times 2y \times x \times (x^2 + y^2)^{-3/2} \right) \times -\frac{1}{|y|} (x^2 + y^2)^{1/2} \\
= \frac{xy}{|y|(x^2 + y^2)}
\]

(b) (i) Suppose \(y \geq 0 \) then \(v(x, y) = \arccos \left(x/(\sqrt{x^2 + y^2}) \right) \) so \(\frac{\partial v}{\partial x} = -\frac{|y|}{(x^2 + y^2)} = -\frac{y}{(x^2 + y^2)}. \)

Suppose \(y \leq 0 \) then \(v(x, y) = -\arccos \left(x/(\sqrt{x^2 + y^2}) \right) \) so \(\frac{\partial v}{\partial x} = -1 \times -\frac{|y|}{(x^2 + y^2)} = -1 \times \frac{y}{(x^2 + y^2)}. \) So in either case

\[
\frac{\partial v}{\partial x} = -\frac{y}{(x^2 + y^2)}.
\]
(ii) Suppose \(y \geq 0 \) then
\[
\frac{\partial v}{\partial y} = \frac{xy}{|y|(x^2 + y^2)} = \frac{xy}{y(x^2 + y^2)} = \frac{x}{(x^2 + y^2)}.
\]
Suppose \(y \leq 0 \) then
\[
\frac{\partial v}{\partial y} = -1 \times \frac{xy}{|y|(x^2 + y^2)} = -1 \times \frac{xy}{-y(x^2 + y^2)} = \frac{x}{(x^2 + y^2)}.
\]
So in either case
\[
\frac{\partial v}{\partial y} = \frac{x}{(x^2 + y^2)}.
\]

(c) In domain \(D \):

(i) \(\frac{\partial u}{\partial x} = \frac{\partial 1/2 \log(x^2 + y^2)}{\partial x} = \frac{1}{2} \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2} \). By the symmetry of \(u(x, y) \) in \(x \) and \(y \) we see that \(\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2} \). Thus on \(D \)
\[
\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2} = \frac{\partial v}{\partial y}
\]
and
\[
\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2} = -\frac{\partial v}{\partial x},
\]
so the Cauchy Riemann equations hold.

(ii) The partial derivatives calculated above are continuous (on \(D \)) as the partial derivatives are continuous on each half and (by the 'creep') correspond on their join (the positive real axis), thus \(u \) and \(v \) are \(C^1 \) on \(D \).

(d) Hence by the Cauchy Riemann Theorem \(\log \) is differentiable everywhere on the open domain \(D \) (\(u \) and \(v \) are \(C^1 \) and satisfy the Cauchy Riemann equations) and hence is analytic on \(D \).