This paper has 13 pages.

The total number of marks allocated is 120.

Common Content: This examination paper contains questions in common with the papers for 620-122 and 620-211.

Authorized Materials: No materials are authorized. Calculators and mathematical tables are not permitted. Candidates are reminded that no written or printed material related to the subject may be brought into the examination. If you have any such material in your possession, you should immediately surrender it to an invigilator.

Instructions to Invigilators: One 14 page script book is to be given to each student initially. Students may retain this examination paper. No written or printed material related to the subject may be brought into the examination. No mathematical tables or calculators may be used.

Instructions to Students: This examination consists of ?? questions. All questions may be attempted.

The number of marks for each question is indicated on the examination paper. The total number of marks is 120. Use of calculators is not allowed.

Paper to be held by Baillieu Library: This paper may be reproduced and lodged with the Baillieu Library.
1. Solution.

(a)
\[1033 = 10 \times 100 + 33 \]
\[100 = 3 \times 33 + 1 \]

(b)
\[1 = 100 - 3 \times 33 \]
\[= 100 - 3 \times (1033 - 10 \times 100) \]
\[= 31 \times 100 - 3 \times 1033 \]

Thus in \(\mathbb{Z}_{1033} \), \(1 = 31 \times 100 - 3 \times 1033 = 31 \times 100 \) meaning \(100^{-1} = 31 \) in \(\mathbb{Z}_{1033} \).

(c)
\[100x = -3 \]
\[\Rightarrow 31 \times 100x = 31 \times -3 \]
\[\Rightarrow x = -93 \]
\[= 940 \]

(d) The inverse of 15 in \(\mathbb{Z}_{85} \) does not exist as \(\gcd(15, 85) = 5 \neq 1 \).
2. Solution.

Let S_n be the proposition that $A^n u = \lambda^n u$ where $n \in \mathbb{Z}^+$.

Base case
S_1: $A^1 u = \lambda^1 u$ as u is an eigenvector of A with eigenvalue λ ($Au = \lambda u$).

Inductive step
Assume S_k is true (where $k \in \mathbb{Z}^+$), that is

\[
A^k u = \lambda^k u \\
\text{thus } A^{k+1} u = A(A^k u) \\
= A(\lambda^k u) \quad (\text{by } S_k) \\
= \lambda^k (Au) \\
= \lambda^k \lambda u \\
= \lambda^{k+1} u
\]

this is S_{k+1}.
So $S_k \Rightarrow S_{k+1}$.

So by the principle of mathematical induction S_n: $A^n u = \lambda^n u$ for any positive integer n.
3. Solution.

(a) \(n = \phi(m) = \phi(3 \times 29) = (3 - 1) \times (29 - 1) = 2 \times 28 = 56. \)

(b) Encrypting the message ‘16’ is done by \(16^{11} \) in \(\mathbb{Z}_{87} \).

\[
\begin{array}{ccc}
16 & 11 \\
82 & 5 \\
25 & 2 \\
16 & 1 \\
\end{array}
\]

So (looking at the odd entries in the RH column) \(16^{11} = 16 \times 82 \times 16 = 16^2 \times 82 = 82 \times 82 = 82^2 = 25 \). Thus ‘16’ is encrypted as ‘25’.

(c) The decrypting key \(d \) needs to be the inverse of \(e \mod n \) (NOT \(\mod m \)! \(11 \times 51 = 561 = 561 - 10 \times 56 = 1 \) in \(\mathbb{Z}_{56} \). Whereas \(11 \times 8 = 88 = 32 \neq 1 \) in \(\mathbb{Z}_{56} \). Thus the appropriate decrypting key is \(d = 51 \).

(d) We need \(62^{51} = (-25)^{51} = -(25^{51}) \).

\[
\begin{array}{ccc}
25 & 51 \\
16 & 25 \\
82 & 12 \\
25 & 6 \\
16 & 3 \\
82 & 1 \\
\end{array}
\]

So (looking at the odd entries in the RH column) \(25^{51} = 25 \times 16 \times 16 \times 82 = 25 \times 16^2 \times 82 = 25 \times 82 \times 82 \times 82 = 25 \times 82^2 = 25 \times 25 = 25^2 = 16 \), so \(-(25^{51}) = -16 = 71 \) in \(\mathbb{Z}_{87} \). Thus ‘62’ is decrypted as ‘71’.

4. Solution. Current algorithms and computing power mean that prime-factorising a 400 digit \(m \) to find \(p \) and \(q \) may well take more than a lifetime. Note that we need \(p \) and \(q \) to find \(n = (p - 1)(q - 1) \) to in turn find \(d = e^{-1} \) in \(\mathbb{Z}_n \).

5. Solution.

(a) As \(3^6 = 1 \) the order of 3 divides 6, thus the possibilities are 1, 2, 3 or 6. Now \(3^1 \neq 1, 3^2 = 9 \neq 1 \) but \(3^3 = 27 \neq 1 \). So the order of 3 is 3.

(b) Now \(\phi(26) = \phi(2 \times 13) = (2 - 1) \times (13 - 1) = 12 \), so (by Euler’s Theorem) the order of any unit divides 12, giving 1, 2, 3, 4, 6, 12 as the possibilities.

Now \(15^6 = 3^6 \times 5^6 = (3^3)^2 \times 5^4 \times 5^2 = 1 \times 1 \times -1 \neq 1 \). Thus the order of 15 is not 6 (or anything dividing 6). Also \(15^4 = 3^4 \times 5^4 = 3^3 \times 3^1 \times 1 = 1 \times 3 = 3 \neq 1 \) so the order of 15 is not 4 (or anything dividing 4). This leaves \(1, 2, 3, 6, 12 \) as the only possibility. As the order of 15 in \(\mathbb{Z}_{26} \) is \(\phi(26) \) it is a primitive unit.

(c) \(13 \equiv 1 \mod \phi(26) \) so by the extended Eulers Theorem \(a^{13} = a \) in \(\mathbb{Z}_{26} \) for any \(a \).
7. Solution.

(a) The rank of A is 3.

(b) The first, second and fourth columns of the original matrix,

$$\begin{bmatrix}
1 & -2 & 1 \\
2 & 4 & 2 \\
-7 & 3 & 1 \\
4 & -2 & 0
\end{bmatrix}.$$

(c) The dimension of the row space of A is the rank of A which is 3.

(d) The rows of A are not linearly independent – it is impossible for 4 vectors to be linearly independent in a space of dimension < 4.

(e) The non-trivial rows of B form a basis for the row space of A,

$$\{(1, 0, 1, 0, 1), (0, 1, -1, 0, 0), (0, 0, 0, 1, 4)\}.$$

(f) No the vectors $(1, -2, 1, 2), (-2, 4, 3, -7), (3, -6, -2, 9), (1, -2, 1, 0), (5, -10, 5, 2)$ do not span \mathbb{R}^4 – these vectors are the columns of A and their span (the column space) is only of dimension 3. Give a reason.

(g) $(3, -6, -2, 9) = 1(1, -2, 1, 2) - 1(-2, 4, 3, -7) -$ see column 3 of B.

(h) Let $x_3 = s$ and $x_5 = t$ (the third and fifth columns of B have no row leaders). Row 3 $\Rightarrow x_4 = -4t$. Row 2 $\Rightarrow x_2 = s$. Row 1 $\Rightarrow x_1 + s + t = 0 \Rightarrow x_1 = -s - t$. Thus to be in the solution space $(x_1, x_2, x_3, x_4, x_5) = (-s - t, s, -4t, t) = s(-1, 1, 1, 0, 0) + t(-1, 0, 0, -4, 1)$. So a basis for the solution space is

$$\begin{bmatrix}
-1 \\
1 \\
0 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
0 \\
1 \\
0 \\
-4
\end{bmatrix}.$$

(i) The kernel of T is the solution space of A thus a basis is the one given to the previous question part.

(a) Now the vector $w = (-1, -1, -1)$ is in P as $(-1) + (-1) + (-1) \leq 0$. But $-1w = (1, 1, 1)$ is not in P as $1 + 1 + 1 \not\leq 0$! So P isn’t closed under scalar multiplication and is not a subspace of \mathbb{R}^3.

(b) Let

$$T : \mathbb{R}^5 \rightarrow \mathbb{R}^4$$

be a linear transformation.

Suppose that $T(u) = u', T(v) = v'$.

(i) $T(u + v) = T(u) + T(v) = u' + v'$ and $T(\alpha u) = \alpha T(u) = \alpha u'$.

(ii) $\text{Ker}(T) = \{w \in \mathbb{R}^5 : T(w) = 0 \ (\in \mathbb{R}^4)\}$.

(iii) $\text{Ker}(T)$ contains $0 \in \mathbb{R}^5$ as $T(0) = T(0w) = 0T(w) = 0 \in \mathbb{R}^4$. So $\text{Ker}(T)$ is non-empty.

Suppose both u and v are in $\text{Ker}(T)$ then $T(u) = 0$ and $T(v) = 0$ so (with $u' = 0$ and $v' = 0$) we see $T(u + v) = 0 + 0 = 0$. Thus $u + v$ is $\text{Ker}(T)$.

Thus $\text{Ker}(T)$ is closed under addition.

$T(\alpha u) = \alpha T(u) = \alpha 0 = 0$ so αu is in $\text{Ker}(T)$ and $\text{Ker}(T)$ is closed under scalar multiplication.

Thus by the subspace Theorem $\text{Ker}(T)$ is a subspace of \mathbb{R}^5.
(a) The word 0001111 is a codeword as
\[B[0 0 0 0 1 1 1]^T = [0 0 0 0]^T \]
whereas the other two words are not codewords as they have non-zero syndrome.

(b) The dimension of C is 3 so there are $|\mathbb{Z}_2|^3 = 2^3 = 8$ codewords.

(c) The minimum distance of the code is 4 so the code can:

(i) correct 1 error (but no more than 1);
(ii) detect 3 errors.

(d) 1000000 \rightarrow 0000000 (the zero word is always a codeword), 0001011 has syndrome 0111 which is the 5th column of the check matrix (so the single error is in the 5th bit) thus 0001011 \rightarrow 0001111. (0001111 is a codeword).

(e) The rank of the matrix B is 4 as it is already in RREF form. Thus by the rank/nullity theorem the dimension of the solution space is (the number of columns - the rank) $7-4 = 3$. The solution space of B is exactly the code C thus C has dimension 3.

(f) The word 1100000 has at least 2 errors as the syndrome 1100\(^T\) is Not 0000\(^T\) (hence at least one error is made) and is NOT a column of the check matrix – if only one error is made in the ith bit then the syndrome is B_i the ith column of the check matrix B.

(a) (i) With the data points $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 & -2 & 1 & 2 & 3 \\ 5 & 5 & 2 & 0 & -2 \end{pmatrix}$ we have $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -4 & -2 & 1 & 2 & 3 \end{pmatrix}^T$.

So

$$A^T A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -4 & -2 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -4 \\ 1 & -2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 0 \\ 0 & 34 \end{pmatrix},$$

$$A^T y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -4 & -2 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \\ 2 \\ 0 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 10 \\ -34 \end{pmatrix}$$

Solving

$$A^T A \bar{u} = A^T y \quad \text{for} \quad \bar{u} = \begin{pmatrix} a \\ b \end{pmatrix}$$

gives

$$5a = 10$$

$$34b = -34$$

So $a = 2, b = -1$.

So the line of (least squares) best fit is $y = 2 - x$.

(ii) The points on the line are $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 & 4 & 1 & 0 & -1 \end{pmatrix}$ giving a least squares error of $(6 - 5)^2 + (4 - 5)^2 + (1 - 2)^2 + (0 - 0)^2 + (-1 - -2)^2 = 4$.

(b) $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -4 & -2 & 1 & 2 & 3 \\ 16 & 4 & 1 & 4 & 9 \end{pmatrix}^T$

10. Solution.

(a) (i) The properties $\langle \ , \ \rangle$ must satisfy (to be an inner product on \mathbb{R}^2) are:

1 $\langle u, v \rangle = \langle v, u \rangle$ for all u, v in \mathbb{R}^2.

2 $\langle u, \alpha v \rangle = \alpha \langle u, v \rangle$ for all $\alpha \in \mathbb{R}$ and for all u, v in \mathbb{R}^2.

3 $\langle u, (v + w) \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all u, v, w in \mathbb{R}^2.

4a $\langle u, u \rangle \geq 0$ for all u in \mathbb{R}^2.

4b $\langle u, u \rangle = 0$ if and only if $u = 0$ in \mathbb{R}^2.
(ii) $\| (3, 2) \| = \left(\langle (3, 2), (3, 2) \rangle \right)^{1/2} = \left(3 \times 3 - 3 \times 2 - 2 \times 3 + 3 \times 2 \times 2 \right)^{1/2} = \sqrt{9} = 3$

and

$\langle (3, 2), (-3, 1) \rangle = (3 \times -3 - 2 \times -3 - 3 \times 1 + 3 \times 2 \times 1) = (-9 + 6 - 3 + 6) = 0$.

(b) Show (by exhibiting an inner product property that fails) that the following formula DOES NOT define an inner product on \mathbb{R}^2:

$\langle (1, 0), (1, 0) \rangle = 1 \times 0 + 0 \times 1 = 0$ but $(1, 0) \neq 0$ so property 4b fails – positive definiteness. $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1y_2 + x_2y_1$.
11. Solution.

(a)
\[
\begin{align*}
\mathbf{u}_1 \cdot \mathbf{u}_1 &= \frac{1}{9}((-2)^2 + 2^2 + 1^2 + 0^2) = \frac{9}{9} = 1 \\
\mathbf{u}_1 \cdot \mathbf{u}_2 &= \frac{1}{9}((-2) \times 2 + 2 \times 2 + 1 \times 0 + 0 \times 1) = 0 \\
\mathbf{u}_2 \cdot \mathbf{u}_2 &= \frac{1}{9}(2^2 + 2^2 + 0^2 + 1^2) = \frac{9}{9} = 1
\end{align*}
\]

Thus the set of vectors is orthogonal and of unit length meaning the set is orthonormal.

(b)
\[
\begin{align*}
\mathbf{v}_1 &= \frac{1}{3}(-2, 2, 1, 0) \quad \rightarrow \quad \mathbf{u}_1 = \frac{1}{3}(-2, 2, 1, 0) \\
\mathbf{v}_2 &= \frac{1}{3}(2, 2, 0, 1) \quad \rightarrow \quad \mathbf{u}_2 = \frac{1}{3}(2, 2, 0, 1)
\end{align*}
\]
the first two vectors form an orthonormal set from (a)
\[
\begin{align*}
\mathbf{v}_3 &= (-2, 5, 4, 3) \quad \rightarrow \quad \mathbf{w}_3 &= \mathbf{v}_3 - (\mathbf{u}_1 \cdot \mathbf{v}_3)\mathbf{u}_1 - (\mathbf{u}_2 \cdot \mathbf{v}_3)\mathbf{u}_2 \\
&= (-2, 5, 4, 3) - ((-2, 5, 4, 3) \cdot \frac{1}{3}(-2, 2, 1, 0))\frac{1}{3}(-2, 2, 1, 0) \\
&\quad - ((-2, 5, 4, 3) \cdot \frac{1}{3}(2, 2, 0, 1))\frac{1}{3}(2, 2, 0, 1) \\
&= (-2, 5, 4, 3) - 2(-2, 2, 1, 0) - (2, 2, 0, 1) = (0, -1, 2, 2) \\
&\quad \rightarrow \quad \mathbf{u}_3 = \frac{1}{3}(0, -1, 2, 2)
\end{align*}
\]

(c) We use the properties of our orthonormal basis
\[
\mathbf{w} = \sum (\mathbf{w} \cdot \mathbf{u}_i) \mathbf{u}_i
\]
Now \((0, 3, 3, 3) \cdot \frac{1}{3}(-2, 2, 1, 0) = 3, (0, 3, 3, 3) \cdot \frac{1}{3}(2, 2, 0, 1) = 3, (0, 3, 3, 3) \cdot \frac{1}{3}(0, -1, 2, 2) = 3 \)
so
\[
(0, 3, 3, 3) = 3\mathbf{u}_1 + 3\mathbf{u}_2 + 3\mathbf{u}_3.
\]
12. Solution. Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ and $T : \mathbb{R}^2 \to \mathbb{R}^2$ be shears along the y-axis and x-axis respectively given by

$$
S \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{cc} 1 & -4 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] \quad \text{and} \quad T \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right].
$$

(a) $S \circ T$ has the standard matrix representation

$$
\left[\begin{array}{cc} 1 & -4 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{cc} -3 & -4 \\ 1 & 1 \end{array} \right].
$$

(b) The image with respect to $S \circ T$ of the vector $\left[\begin{array}{c} 1 \\ 1 \end{array} \right]$ is

$$
\left[\begin{array}{cc} -3 & -4 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} 1 \\ 1 \end{array} \right] = \left[\begin{array}{c} -7 \\ 2 \end{array} \right].
$$

(c) As $S \circ T : [1 \ 1]^T \to [-7 \ 2]^T$ the line $y = x$ maps to $2x + 7y = 0$.
13. Solution.

(a) \[
\begin{bmatrix}
3 & 4 \\
-2 & -3
\end{bmatrix}
\].

(b) The transition matrix \(P_{B\rightarrow S} \) from \(B \) to \(S \) is \[
\begin{bmatrix}
2 & -1 \\
-1 & 1
\end{bmatrix}
\].

(c) The transition matrix \(P_{S\rightarrow B} \) from \(S \) to \(B \) is \((P_{B\rightarrow S})^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \).

(d) We want \([w]_B, [w]_S = P_{S\rightarrow B}[w]_S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -7 \\ 11 \end{bmatrix} = \begin{bmatrix} 4 \\ 15 \end{bmatrix} \), so
\[
\begin{bmatrix} -7 \\ 11 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 15 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.
\]

(e) \[
[T]_{B\rightarrow B} = P_{S\rightarrow B}[T]_{S\rightarrow S}P_{B\rightarrow S} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

(f) \([T(w)]_B = [T]_{B\rightarrow B}[w]_B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 15 \end{bmatrix} = \begin{bmatrix} 4 \\ -15 \end{bmatrix} \).

\[
\det (A - \lambda I) = \det \left(\begin{bmatrix} 5 - \lambda & 6 \\ -3 & -4 - \lambda \end{bmatrix} \right)
\]

\[
= (5 - \lambda)(-4 - \lambda) - (-3 \times 6)
\]

\[
= \lambda^2 - \lambda - 2
\]

if and only if \(\lambda \in \{-1, 2\} \). So the eigenvalues are 2 and -1.

\(\lambda = 2 \)
\[
\begin{bmatrix}
5 - \lambda & 6 \\
-3 & -4 - \lambda
\end{bmatrix} = \begin{bmatrix} 3 & 6 \\
-3 & -6
\end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\
0 & 0
\end{bmatrix}
\]

which has non-zero vector \([2 & -1]^T\) in its solution space. Thus \([2 & -1]^T\) is an eigenvector for \(\lambda = 2 \).

\(\lambda = -1 \)
\[
\begin{bmatrix}
5 - \lambda & 6 \\
-3 & -4 - \lambda
\end{bmatrix} = \begin{bmatrix} 6 & 6 \\
-3 & -3
\end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\
0 & 0
\end{bmatrix}
\]

which has non-zero vector \([1 & -1]^T\) in its solution space. Thus \([1 & -1]^T\) is an eigenvector for \(\lambda = -1 \).
15. Solution.

(a) \[
\begin{bmatrix}
7 & 10 & -2 \\
10 & 4 & -8 \\
-2 & -8 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}
= \begin{bmatrix}
36 \\
-18 \\
0
\end{bmatrix}
= 18 \begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}
\]
so \(v_1\) is an eigenvector with eigenvalue 18.

\[
\begin{bmatrix}
7 & 10 & -2 \\
10 & 4 & -8 \\
-2 & -8 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]
so \(v_2\) is an eigenvector with eigenvalue 0.

\[
\begin{bmatrix}
7 & 10 & -2 \\
10 & 4 & -8 \\
-2 & -8 & -2
\end{bmatrix}
\begin{bmatrix}
-1 \\
2 \\
2
\end{bmatrix}
= \begin{bmatrix}
9 \\
-18 \\
9
\end{bmatrix}
= -9 \begin{bmatrix}
2 \\
-2 \\
2
\end{bmatrix}
\]
so \(v_3\) is an eigenvector with eigenvalue -9.

(b) \[D = P^{-1}AP\]
where
\[
P = \begin{bmatrix}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{bmatrix}
\]
and
\[
D = \begin{bmatrix}
18 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -9
\end{bmatrix}
\]

Note that \(P^{-1}\) exists as eigenvectors for different eigenvalues are linearly independent.

(c) We merely need to normalize the orthogonal set of eigenvectors that formed the columns of \(P\) thus
\[
Q = \frac{1}{3} \begin{bmatrix}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{bmatrix}
\]

(d) The matrix \(A\) is symmetric with distinct eigenvalues thus the eigenvectors \(v_1, v_2, v_3\) are orthogonal.

(e) \(\langle u, v \rangle = u^T A w\) does not define an inner product on \(\mathbb{R}^3\) as (choosing an eigenvector for a negative eigenvalue)
\[
\langle v_3, v_3 \rangle = v_3^T A v_3 = -9v_3^T v_3 = -81.
\]

So the alleged inner product is not positive definite.