1. Consider the function \(f(z) = \frac{z^2}{z+2} \)

(a) The function \(f(z) = \frac{z^2}{z+2} \) has the single singularity \(z = -2 \) which is outside \(D = \{ z \in \mathbb{C} : |z| \leq 1 \} \) so by the maximum modulus principle the maximum modulus is attained on the boundary of \(D \) namely \(|z| = 1 \).

\[\left| \frac{z^2}{z+2} \right| = \frac{1}{|z+2|} \text{ is maximized when } |z+2| \text{ is minimized which is when } z = -1 \text{ (the closest the circle } |z| = 1 \text{ is to } 2 \text{ is at } z = -1), \text{ thus } \left| \frac{z^2}{z+2} \right| \text{ has maximum value } 1 \text{ on } D \text{ when } z = -1 \]

(b) As \(D \subseteq D' \) it follows that the maximum of (any) \(l \) attained on \(D \) is less than the maximum of \(l \) on \(D' \) so \(M \leq M' \).

To calculate \(M' \), note again \(f(z) \) is analytic on \(D' \) so we examine \(|f(z)| \) on \(\partial D' \). We parameterize \(\partial D' \) by \(\gamma_L : z = -1 + it \), where \(-1 \leq t \leq 1\), \(\gamma_T : z = t + i, \) where \(-1 \leq t \leq 1\), \(\gamma_B : z = t - i, \) where \(-1 \leq t \leq 1\), \(\gamma_R : z = 1 + it, \) where \(-1 \leq t \leq 1\).

On \(\gamma_L \)
\[
\left| \frac{z^2}{z+2} \right| = \frac{1 + t^2}{\sqrt{(2-1)^2 + t^2}} = \frac{1 + t^2}{\sqrt{1 + t^2}} = \sqrt{2} \text{ at } t = \pm 1
\]

On \(\gamma_T \)
\[
\left| \frac{z^2}{z+2} \right| = \frac{t^2 + 1}{\sqrt{1 + (2+t)^2}} \leq \frac{t^2 + 1}{\sqrt{1 + t^2}} \leq \frac{\sqrt{2}}{\sqrt{2}}
\]

As on the interval \(-1 \leq t \leq 1\) it is true that \(1 + t^2 \leq 1 + (2+t)^2 \Rightarrow 1/(1+t^2) \geq 1/(1+(2+t)^2)\). By symmetry the same is true on \(\gamma_B \).

Comparing the denominators (of \(\gamma_R \) and \(\gamma_L \) respectively) \(|z+2| = \sqrt{3 + t^2} > \sqrt{3} > \sqrt{2} > |z+2|\) on \(\gamma_L \) where as for the numerators \(|-1 + it| = |1 + it|\). So \(|f(z)| < \sqrt{2}\) on \(\gamma_R \), comparing \(\gamma_R \) with \(\gamma_L \).

Thus on \(D' \) the maximum modulus of \(f(z) \) is \(\sqrt{2} \) attained at \(z = -1 + i \) and \(z = -1 - i \).

2. Using an appropriate substitution and Cauchy’s Integral Formula or Cauchy’s General Integral Formula calculate:

We let \(z = e^{i\theta} \) which gives \(d\theta = \frac{dz}{iz} \cos(\theta) = \frac{z + z^{-1}}{2} \) as \(\theta \) runs from 0 to \(2\pi \) \(z \) does one complete traverse of the unit circle \(|z| = 1 \).
\[
\int_0^{2\pi} \frac{1}{3 + 2 \cos \theta} d\theta = \oint_{|z|=1} \frac{1}{3 + z + z^{-1}} \frac{dz}{iz}
\]
\[
= \frac{1}{i} \oint_{|z|=1} \frac{1}{z^2 + 3z + 1} dz
\]
\[
= \frac{1}{i} \oint_{|z|=1} \frac{1/(z - (-3 - \sqrt{5})/2)}{z - (-3 + \sqrt{5})/2} dz
\]
the numerator \(1/(z - (-3 - \sqrt{5})/2)\) is analytic on \(|z| < 2\) which contains the contour \(|z| = 1\) so by CIF
\[
= \frac{1}{i} 2\pi i \frac{1}{z - (-3 - \sqrt{5})/2} \Big|_{z=-3+\sqrt{5}/2}
\]
\[
= 2\pi \frac{1}{\sqrt{5}}
\]

(b) With the same substitution and approach as above
\[
\int_0^{2\pi} \frac{1}{(3 + 2 \cos \theta)^2} d\theta = \oint_{|z|=1} \frac{1}{(3 + z + z^{-1})^2} \frac{dz}{iz}
\]
\[
= \frac{1}{i} \oint_{|z|=1} \frac{z}{(z^2 + 3z + 1)^2} dz
\]
\[
= \frac{1}{i} \oint_{|z|=1} \frac{z/(z - (-3 - \sqrt{5})/2)^2}{(z - (-3 + \sqrt{5})/2)^2} dz
\]
the numerator \(n(z) = z/(z - (-3 - \sqrt{5})/2)^2\) is analytic on \(|z| < 2\) which contains the contour \(|z| = 1\) so by GCIF
\[
= \frac{1}{i} 2\pi i \frac{d}{dz} n(z) \Big|_{z=3+\sqrt{5}/2}
\]
\[
= 2\pi \left((z - (-3 - \sqrt{5})/2)^{-2} - 2z(z - (-3 - \sqrt{5})/2)^{-3} \right) \Big|_{z=-3+\sqrt{5}/2}
\]
\[
= 2\pi \left(\frac{1}{5} \left(1 + (3 - \sqrt{5})/(\sqrt{5}) \right) \right)
\]
\[
= 2\pi \left(\frac{1}{5} \left(3/\sqrt{5} \right) \right)
\]
\[
= \frac{6\pi}{5\sqrt{5}}
\]

3. Consider the series
\[
S = \sum_{n=0}^{\infty} (-1)^n (2z)^n = 1 - (2z) + (2z)^2 - (2z)^3 + \ldots
\]

(a) The series \(S\) is geometric with common ratio \(r = (-2z)\) and so will converge provided \(|r| = | -2z| < 1\) that is if \(|z| < \frac{1}{2}\).

(b) Using \(\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}\) (for \(|z| < \frac{1}{2}\)) we obtain \(S = \frac{1}{1+2z}\)

(c) We cannot include \(z = -\frac{1}{2}\) as this is a singularity of \(\frac{1}{1+2z}\) so the largest disk open centred at the origin is \(|z| < \frac{1}{2}\).

Note that this is the same open disk as for the convergence of \(S\).
4. (a) Let \(z_0 = 0 \), \(r = 1 \) and \(f(z) = e^z \) then

\[
\int_0^{2\pi} e^{i\theta} d\theta = 2\pi \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = 2\pi f(z_0) = 2\pi e^0 = 2\pi
\]

(b) i. Expanding out

\[
\left(\int_0^{2\pi} e^{i\theta} d\theta \right) = (2\pi)
\]

\[
\Leftrightarrow \int_0^{2\pi} (e^{\cos \theta + i \sin \theta} d\theta) = 2\pi
\]

\[
\Leftrightarrow \int_0^{2\pi} (e^{\cos \theta} e^{i \sin \theta} d\theta) = 2\pi
\]

\[
\Leftrightarrow \int_0^{2\pi} (e^{\cos \theta} (\cos(\sin \theta) + i \sin(\sin \theta))) d\theta = 2\pi
\]

\[
\Leftrightarrow \int_0^{2\pi} (e^{\cos \theta} \cos(\sin \theta)) d\theta + i \int_0^{2\pi} (e^{\cos \theta} \sin(\sin \theta)) d\theta = 2\pi + i0
\]

So taking real parts we obtain \(\int_0^{2\pi} e^{\cos(\theta)} \cos(\sin \theta) d\theta = 2\pi \)

ii. Where as \(\int_0^{2\pi} e^{\cos(\theta)} \sin(\sin \theta) d\theta = 0 \) is obtained by taking imaginary parts.