Dr DAVID RIDOUT

Position:
Senior Lecturer
Room:
159
Ext. Number:
45534
Interests:
  • Conformal/Quantum Field theory
  • Integrable models
  • Representation Theory
  • Vertex operator algebras
Recent Publications:
  • Superconformal Minimal Models and Admissible Jack Polynomials (2017) more
  • The super-Virasoro singular vectors and Jack superpolynomials relationship revisited (2016) more

Selected Publications


Extra Information:
I study the mathematical structures that underlie my favourite physical theories. These include vertex operator algebras / conformal field theories and their relations with string theory, integrable models, representation theory and number theory (and anything else that I can think of). At the moment, this means logarithmic conformal field theory, Kac-Moody superalgebras, non-semisimple tensor categories and mock modular forms. I'm especially interested in the appearance of indecomposable (but reducible) representations in physics, but pretty much anything that involves cool math is fine with me.

Currently, I'm studying examples of conformal field theories in which the correlation functions exhibit logarithmic singularities. In representation-theoretic terms, these logarithmic theories are built from representations which are indecomposable but not irreducible. Such theories arise naturally when considering so-called non-local observables (crossing probabilities, fractal dimensions) in the conformal limit of many exactly solvable lattice models (percolation, Ising). They are also relevant to string-theoretic considerations, especially when the target space admits fermionic directions, AdS/CFT, and perhaps even to black hole holography.

In mathematics, there is a tantalising suggestion that logarithmic conformal field theory and Schramm-Loewner Evolution may be equivalent in some sense. The corresponding logarithmic vertex operator algebras also suggest natural generalisations of the notion of a modular tensor category. Finally, the characters of the modules of a vertex operator algebra tend to have nice modular properties. Some of the examples that I study are related to false / partial theta functions and mock / quantum modular forms.
Current Postgraduate Supervision:
Current MSc Students:
Recent Grant History:
Year(s) Source Type Title
2016 - 2018 ARC Discovery Towards higher rank logarithmic conformal field theories
2010 - 2014 ARC Discovery Indecomposable structure in representation theory and logarithmic conformal field theory
Responsibilities:
BSc Mathematics & Statistics Major Coordinator
Committees:
UGS Committee (Majors Coordinator)