Graph Theory: Syllabus

Week 1: Introduction [3 Lectures]

Definitions graph, vertex, vertex set, edge, edge set, adjacent vertices, edge joins vertices, multigraph, pseudograph, loop, order and size of a graph, degree of a vertex, neighbourhood of a vertex, edges incident to a vertex, isolated-vertex, end-vertex, r-regular graph, regular graph, degree sequence, minimum degree, maximum degree, isomorphic graphs, isomorphism

Theorems, Lemmas and Corollaries maximum number of edges in a graph, Handshaking Theorem, sum of vertex degrees is even, no odd number of odd degrees, two vertices of same degree, degrees of vertices of isomorphic graphs, average degree is between $\delta(G)$ and $\Delta(G)$, properties of a graph preserved by isomorphism

Week 2: Introduction (cont’d) [3 Lectures]

Definitions subgraph, induced subgraph, deletion of a vertex, spanning subgraph, complement of a graph, self-complementary graph, walk, trail, path, length of walk, cycle, closed walk, connected graphs, disconnected graphs, components, number of components, cut-vertex, bridge, complete graph, Petersen graph, hypercube, paths, cycles, bipartite graph, complete bipartite graph, union, join, Cartesian product

Theorems, Lemmas and Corollaries every walk contains a path, cycles contain two paths between pairs of vertices, bridges are not in cycles, bipartite graphs and no odd cycles

Algorithms finding a path in a walk

Week 3: Algorithms [3 Lectures]

Definitions algorithms, (worst case) complexity of an algorithm, order of a function, polynomial algorithms, searching problem, adjacency matrix, sorting problem

Theorems, Lemmas and Corollaries complexity of binary search

Algorithms sequential search algorithm, binary search algorithm, bubblesort algorithm, adjacency listing

Week 4: Trees and distance [3 Lectures]

Definitions tree, forest, binary search tree, complete m-ary tree, complete binary tree, spanning trees, fundamental cycle, directed tree, rooted tree, child, descendant, parent, ancestor, depth-first search tree, dfi(v)

Theorems, Lemmas and Corollaries spanning trees exist if and only if graph is connected, characterizations of a tree (equivalent definitions), unique path between two vertices in a tree, each edge is a bridge in a tree, every connected graph contains a spanning tree, exact one cycle when adding an edge to a tree
Algorithms depth-first search algorithm

Week 5: Trees and distance (cont’d) [3 Lectures]

Definitions minimum spanning tree, breadth-first search forest, weighted graph

Theorems, Lemmas and Corollaries DFS characterisation of cut-vertices, DFS characterisation of bridges, Kruskal finds minimum spanning tree

Algorithms finding cut-vertices using DFS, finding bridges using DFS, breadth-first search algorithm Kruskal’s algorithm

Week 6: Trees and distance (cont’d) [2 Lectures, Good Friday]

Definitions distance, eccentricity of a vertex, diameter, radius, centre of a graph

Theorems, Lemmas and Corollaries Prim finds minimum spanning tree, distance function is a metric, \(\text{rad}(G) \leq \text{diam}(G) \leq 2 \text{rad}(G)\), centre of a tree is \(K_1\) or \(K_2\)

Algorithms Prim’s algorithm

Week 7: Trees and distance (cont’d) [1 Lecture]

Definitions shortest path problem

Algorithms Dijkstra’s algorithm

Week 7: Matchings and factors [2 Lectures]

Definitions marriage problem, assignment problem, matching, perfect matching, matched vertex, maximum matching, alternating path, augmenting path factor 1-factor 1-factorization

Theorems, Lemmas and Corollaries Berge’s Theorem (maximum matching if and only if no augmenting path), Tutte’s Theorem [No proof], every bridgeless cubic graph contains a perfect matching

Algorithms maximum matching algorithm for bipartite graphs

Week 8: Matchings and factors (cont’d) [3 Lectures]

Definitions augmentation, alternating tree, maximum alternating tree

Theorems, Lemmas and Corollaries Hall’s marriage theorem

Algorithms maximum matching algorithm for bipartite graphs

Week 9: Eulerian graphs [3 Lectures]

Definitions Eulerian trails, Eulerian circuits, Eulerian multigraphs, Chinese postman problem

Theorems, Lemmas and Corollaries Eulerian multigraphs and even degree vertices, Eulerian trails and at most two odd degree vertices, Chinese postman solution theorem

Algorithms Finding eulerian circuits

Week 10: Network flows [3 Lectures]
Definitions digraph (directed graph), arc, network, capacity function, capacity, flow, val f: value of f, maximum flow, cut, capacity of cut, minimum cut, f-saturated arc, f-zero arc, f-augmenting semipath

Theorems, Lemmas and Corollaries flow conservation theorem, comparison of val f to capacity of cut, max-flow if and only if no augmenting semipath, Max-flow Min-cut Theorem

Algorithms Ford-Fulkerson algorithm

Week 11: Network flows and connectivities [3 Lectures]

Definitions $\kappa(G)$: connectivity, internal disjoint path, edge-disjoint path $\lambda(G)$: edge-connectivity

Theorems, Lemmas and Corollaries $\kappa \leq \lambda \leq \delta$, Menger’s Theorem

Algorithms labelling algorithm for network flow problem

Week 12: Colouring and planarity [3 Lectures]

Definitions vertex colouring, chromatic number, edge-colouring, edge chromatic number, planar graphs, subdivision

Theorems, Lemmas and Corollaries Brooks’ Theorem [No proof], Vizing’s Theorem [No proof], Euler’s formula, every planar graph of order $n \geq 3$ has at most $3n - 6$ edges, every planar graph contain a vertex of degree at most 5, K_5 and $K_{3,3}$ are nonplanar, Kuratowski’s Theorem [No proof], Four Colour Theorem [No proof]