School Seminars and Colloquia

Integral zeta values and the number of automorphic representations

Algebra/Geometry/Topology Seminar

by Benedict Gross

Institution: Harvard
Date: Tue 10th February 2009
Time: 2:30 PM
Location: JH Michell Theatre

Abstract: Let \zeta^*(s):= (1 2^(1 s))\zeta(s). Euler proved that the values of \zeta^*(s) at negative integers are elements of the ring Z[1/2]. Cassou-Nogues and Deligne/Ribet generalized this to an integrality result for the values of arbitrary partial zeta functions at negative integers. I will review their results, and show how these special values can be used to compute the number of irreducible automorphic representations of G with prescribed local behavior, where G is a simple group over a global field k. Via the global Langlands correspondence for k = F(t), I will compare this result with work of Katz and Deligne on Kloosterman sheaves. This is joint work with Mark Reeder.

For More Information: