School Seminars and Colloquia

Worm Algorithms

Mathematical Physics Seminar

by Tim Garoni

Institution: Mathematics and Statistics, The University of Melbourne
Date: Mon 4th May 2009
Time: 1:00 PM
Location: Russell Love Theatre, Richard Berry Bldg (M&S), The University of Melbourne

Abstract: Monte Carlo simulations in statistical mechanics typically suffer from critical slowing-down: the relaxation time diverges as the critical point is approached, most often as a power-law. One approach to circumventing this slowing-down in spin models involves replacing the spins by an alternate representation, obtained from the original model by algebraic transformation. The "cluster algorithms", first introduced by Swendsen and Wang in 1987, provide an important example of this approach, and generically involve performing global updates in a clever way. Another more recent example are the so-called "worm algorithms", first discussed by Prokof'ev and Svistunov, which simulate the high-temperature graphs of the spin model, considered as a statistical-mechanical model in their own right. It turns out that, despite the local nature of worm algorithms, they often outperform the competing cluster algorithms. In this talk we will give an introduction to worm algorithms for simulating the Ising model, and go on to discuss a recent application involving the fully-packed loop model.

For More Information: for further information please contact Iwan Jensen on email