# Inter-relationships between spacing distributions in random matrix theory

*by Professor Peter Forrester*

*Institution:*The University of Melbourne, Mathematics and Statistics Department

*Date: Tue 14th July 2009*

*Time: 1:00 PM*

*Location: Room 107, Richard Berry Building, The University of Melbourne*

*Abstract*: In random matrix theory there is a parameter b which controls the level repulsion between neighbouring eigenvalues. It has been known since the pioneering work of Dyson and Mehta in the early 60s that integrating over every second eigenvalue in a b = 1 ensemble gives a b = 4 ensemble, while superimposing two b = 1 ensembles then integrating over every second eigenvalue gives a b = 2 ensemble. The implications of these results will be discussed for their consequences to spacing distributions, and a generalization will be given, which in turn relies on a generalization of the Dixon-Anderson integral from the theory of the Selberg integral.

*For More Information:* contact Chris Ormerod: email: c.ormerod@ms.unimelb.edu.au