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SUMMARY

The infinite dimension of functional data can challenge conventional methods for classification

and clustering. A variety of techniques have been introduced to address this problem, particu-

larly in the case of prediction, but the structural models that they involve can be too inaccurate,

or too abstract, or too difficult to interpret, for practitioners. In this paper we develop approaches

to adaptively choose components, enabling classification and clustering to be reduced to finite-

dimensional problems. We explore and discuss properties of these methodologies. Our tech-

niques involve methods for estimating classifier error rate and cluster tightness, and for choosing

both the number of components, and their locations, to optimize these quantities. A major attrac-

tion of this approach is that it allows identification of parts of the function domain that convey
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2 A. DELAIGLE, P. HALL AND N. BATHIA

important information for classification and clustering. It also permits us to determine regions

that are relevant to one of these analyses but not the other.

Some key words: Bandwidth; classification error rate; kernel method; statistical smoothing; tightness of clusters.

1. INTRODUCTION

Problems of classification for functional data are vexed by difficulties caused by the intrinsic

infinite dimension of functions. For simpler methods, such as linear or quadratic discriminant

analysis, the difficulty is caused by the necessity to estimate and invert covariance operators. For

nonparametric classifiers, which are attractive because of the awkwardness of modelling random

functions, parameter-free approaches to infinite-dimensional problems can produce noisy and

slowly convergent techniques since they attempt to respond to too many different sources of

information. Similar difficulties can arise in problems of clustering, since algorithms can become

trapped in local minima if they are calculated using too many dimensions. These difficulties

motivate methods for dimension reduction.

In the functional data context, classifiers are constructed from independent data pairs dis-

tributed as (X,Y ), where X is a random function defined on a compact interval I and Y is a

class label taking the values 0 to K − 1, with K denoting the number of classes. Clusterers are

constructed from data on X alone. In the literature, dimension reduction is often performed by

projecting functional curves onto a finite number, p, of functions ψ1, . . . , ψp. Then, standard mul-

tivariate classifiers or clusterers are applied to the p-variate projections (
∫
I Xψ1, . . . ,

∫
I Xψp)

T.

In this context, the functions ψj are often taken to be the first p elements of a basis, where the

functional basis is either arbitrary, for example a spline basis, or chosen from the data, for exam-

ple the principal component basis. See for example Hall et al. (2001), Glendinning and Herbert

(2003), Huang and Zheng (2006) and Song et al. (2008).
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Componentwise classification 3

These approaches to dimension reduction are hindered by the fact that, in general, there is

no particular reason why these functions ψj would be particularly suitable for classification. In

particular, since the ψjs are not chosen to optimize classification performance then, by project-

ing the data on a low number, p, of them, we may lose a great deal of information relevant to

classification. This is true even for the principal component basis which is constructed from the

data, but only in a way that guarantees that the variability of the X functions is well represented

by projecting on the first few basis functions. In particular, this basis is chosen regardless of the

class labels of the data. To overcome this issue, in an unpublished manuscript, Tian and James

suggested an iterative approach combining prediction-based variable selection and control of

model complexity. Their solution is one of the first attempts to choose basis functions in a way

that takes into account classification error. Their method is interesting, but it is a little complex

and not fully data-driven; for example, p is not chosen from the data. Moreover, parts of their

algorithm are based on prediction rather than classification.

In this paper, we develop a simple technique that can be employed for virtually any clas-

sification or clustering method, and which provides useful practical insight and interpretabil-

ity. Our approach is very simple; it consists of determining a relatively small number of points

t1, . . . , tp ∈ I that are chosen so that X(t1), . . . , X(tp) convey particular information for clas-

sification or clustering, respectively. Those points then become of special interest to the prac-

titioner, who might wish to consider aspects of the data generating process that influence the

function X at t1, . . . , tp. Even the fact that the points might be different in different problems,

for example problems of classification and clustering, is of interest. It is well known that, while

some data features are particularly helpful for characterising the type or nature of the data, they

can be unhelpful for prediction. As we shall see, this is also true in the context of classification,

where landmark points for classification can often be located at inflection points of the curves,
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4 A. DELAIGLE, P. HALL AND N. BATHIA

rather than, for example, at turning points. We shall also see that, when classifying a sample of

random functions Xi(t) into groups, the important points t depend on the nature of the groups.

In other words, the points that are important for a grouping based on a variable Y are not neces-

sarily important for a grouping based on another variable Z. Therefore, being able to identify the

features that are important for the problem of interest, in a readily interpretable way, can be ad-

vantageous. A point selection approach was introduced by Ferraty et al. (2010) in the prediction

context. The methodology and results in that paper are quite different from those here.

We suggest empirical approaches to choosing both p and the points t1, . . . , tp ∈ I. Specifi-

cally, we construct classifiers and clustering methods when data on X are restricted to t1, . . . , tr,

for successive values of r, and for each r we estimate the performance of the methodology, stop-

ping when the amount of error incurred by the classifier, or absence of tightness of clusters, drops

below a threshold. The value of r at which this occurs represents our empirical approximation,

p̂, to p. In the context of clustering it is sometimes possible, depending on the clustering method,

to use the random functions directly, but even here there is a great deal of insight to be gained by

determining a small number of components that have substantial leverage for constructing tight

clusters.

Methods for classifying functional data have been discussed by a number of authors; see §2·4.

For additional references on classification and clustering, see James and Sugar (2003), Vilar and

Pertega (2004), Biau et al. (2005), Fromont and Tuleau (2006), Leng and Müller (2006), López-

Pintado and Romo (2006), Rossi and Villa (2006), Cuevas et al. (2007), Wang et al. (2007),

Berlinet et al. (2008), Epifanio (2008), Peng and Müller (2008), Araki et al. (2009) and Cham-

roukhi et al. (2010). For a general introduction to functional data analysis, see Ramsay and

Silverman (2005).
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Componentwise classification 5

2. MODEL AND METHODOLOGY FOR CLASSIFICATION

2·1. Model

In problems of classification we assume that independent and identically distributed data

pairs (X1, I1), . . . , (Xn, In) are observed, where each Ij is a class label taking values in the

set {0, . . . ,K − 1}, with K denoting the number of classes. The goal of classification methods

is to assign, to one of the K classes, a value x of X that is missing its class label. For brevity

here we treat only the case of two populations, numbered 0 and 1 respectively, noting that other

settings are similar.

To overcome the difficulties encountered by classifiers applied to infinite dimensional ob-

jects, rather than using the whole functions X directly, we identify a small number of points

t1, . . . , tp ∈ I that have important leverage for classification, and apply a conventional finite di-

mensional classifier based on the p-dimensional vectors
(
X(t1), . . . , X(tp)

)T. We select p and

t1, . . . , tp adaptively, in a way that depends on both the data and the particular classifier em-

ployed, as described below in §§2·2 and 2·3. Theoretical properties of the method will be studied

in the appendix, and proofs are available in the Supplementary Material.

2·2. Choosing the points in a given dimension

We start by describing, for a general classifier, the procedure that selects the most important

r-dimensional point when r is fixed. Next, in §2·3, we show how to choose the dimension p.

Given the dataset D = {(X1, I1), . . . , (Xn, In)}, let J(x,D | t(r)) denote the population index,

either 0 or 1, to which our classifier assigns the individual with explanatory variable x after

dimension has been reduced to t(r) = (t1, . . . , tr)
T. In particular, the classifier that produces the

result J(x,D | t(r)) is based on the data vectors
(
Xi(t1), . . . , Xi(tr), Ii

)T for i = 1, . . . , n. The
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6 A. DELAIGLE, P. HALL AND N. BATHIA

cross-validation estimator of error rate is

êrrr(t(r)) =
1

n

n∑
i=1

I{J(Xi,D−i | t(r)) ̸= Ii} , (1)

where D−i = D \ {(Xi, Ii)} denotes the dataset with the ith data pair removed. We set the most

important r-dimensional point t(r) = t̂(r) to be the one that minimizes êrrr(t(r)).

2·3. Choosing p

To describe how to choose p, let Ir denote the set of all r-vectors t(r) = (t1, . . . , tr)
T with

t1 < . . . < tr and t1, . . . , tr ∈ I, and define

Tr = inf
t(r)∈Ir

êrrr(t(r)) = êrrr
(
t̂(r)

)
.

We suggest increasing r until the incremental change in the minimum error Tr for r dimensions is

a small fraction of the minimum error for the previous value of r, or of T1. These two approaches

can be formalized by respectively defining p̂ by p̂ = inf{r : Tr − Tr+1 ≤ ρ Tr−1}, the latter

being equivalent to

p̂ = inf{r : (1− ρ)Tr ≤ Tr+1} , (2)

or by defining p̂ by

p̂ = inf{r : Tr − Tr+1 ≤ ρ T1}. (3)

Here, ρ denotes a pre-determined small proportion, for example ρ = 0·05, 0·1 or 0·2. In our

numerical work we used the approach based on (2) with ρ = 0·1. This gave good results in

all cases, but the value of ρ is not very important and we obtained similar results with other

values of ρ ranging from 0 to 0·2; see the Supplementary Material for an illustration on some

simulated examples. It is inappropriate here to try to drive the error down to zero. Even the Bayes

classifier, in finite-dimensional problems where the supports of the distributions representing

the two populations have nondegenerate intersection, has strictly positive classification error.
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Componentwise classification 7

Therefore, in classification problems it does not make sense to continue to increase r until the

error falls to a small proportion ρ.

Let nk =
∑n

i=1 I(Ii = k) denote the number of observations drawn from population k. The

expected error rate of empirical classifiers is

errr(t(r)) =
n0
n

pr0
{
J(X,D | t(r)) = 1

}
+
n1
n

pr1
{
J(X,D | t(r)) = 0

}
, (4)

where X is random function that is independent of the dataset D, and prk denotes probability

measure under the hypothesis that X is from population k. The quantity errr(t(r)) is estimated

by êrrr(t(r)), at (1). The expected error rate of the classifier when t(r) is replaced by t̂(p̂) is

erremp =
n0
n

pr0
{
J
(
X,D

∣∣ t̂(p̂)) = 1
}
+
n1
n

pr1
{
J
(
X,D

∣∣ t̂(p̂)) = 0
}
. (5)

2·4. Details for specific classifiers

Next we describe the application of our methodology to five popular classifiers: Fisher’s linear

and quadratic discriminants (James and Hastie, 2001; Preda et al., 2007; Shin, 2008), a nonpara-

metric Bayes rule, a nonparametric regression-based classifier (Ferraty and Vieu, 2003, 2006)

and a classifier based on logistic regression. Let x denote a new function, without a class label,

which we wish to classify, and put x(t(r)) =
(
x(t1), . . . , x(tr)

)T. Let π0 and π1 denote the prior

probabilities of the two populations. Often in practice, πk is taken to be equal to either nk/n, if

we believe that the sample proportions reflect the population ones, or 1/2 otherwise.

To define Fisher’s linear discriminant method combined with our point selection approach,

put Xi(t(r)) =
(
Xi(t1), . . . , Xi(tr)

)T, let Σ̂(t(r)) denote the empirical r × r covariance matrix

computed from the data vectors Xi(t(r)) for i = 1, . . . , n, and write X̄0(t(r)) and X̄1(t(r)) for the

average of Xi(t(r)) over i such that Ii = 0 and Ii = 1, respectively. Fisher’s linear discriminant,

for the particular choice t(r) of components, assigns x to population 0 if

{
x(t(r))−X̄0(t(r))

}T
Σ̂(t(r))

−1
{
x(t(r))− X̄0(t(r))

}
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8 A. DELAIGLE, P. HALL AND N. BATHIA

≤
{
x(t(r))− X̄1(t(r))

}T
Σ̂(t(r))

−1
{
x(t(r))− X̄1(t(r))

}
+ C01 , (6)

where C01 = log(π0/π1), or equivalently if

2
{
X̄0(t(r))− X̄1(t(r))

}T
Σ̂(t(r))

−1 x(t(r)) ≥X̄0(t(r))
T Σ̂(t(r))

−1 X̄0(t(r))

− X̄1(t(r))
T Σ̂(t(r))

−1 X̄1(t(r))− C01 ,

and to population 1 otherwise.

Fisher’s quadratic discriminant method is almost identical to the linear discriminant method.

For the particular choice t(r) of components, it assigns x to population 0 if (6) is satisfied, ex-

cept that Σ̂(t(r)) on the left- and right-hand sides of the inequality is replaced by its variants

Σ̂0(t(r)) and Σ̂1(t(r)) computed solely from the data vectors Xi(t(r)) drawn from populations 0

and 1, respectively. In practice, for the linear and quadratic discriminant classifiers, the error rate

can be estimated directly by n−1
∑n

i=1 I{J(Xi,D | t(r)) ̸= Ii} instead of by the leave-one-out

approach at (1).

The third classifier, a nonparametric version of Bayes rule, can be implemented in our context

as follows. For k = 0, 1 , let fk(x | t(r)) denote the density of
(
X(t1), . . . , X(tr)

)T evaluated at(
x(t1), . . . , x(tr)

)T, given that X is drawn from population k. For k = 0, 1 and j = 1, . . . , r,

let hk,j > 0 be smoothing parameters called bandwidths, and let K be a smooth, symmetric

probability density called the kernel. A multivariate kernel density estimator of fk(x | t(r)) can

be defined by

f̂k
(
x | t(r)

)
=

cr
nk

∏r
j=1 hk,j

n∑
i=1

I(Ii = k)K
[{ r∑

j=1

|x(tj)−Xi(tj)|2/h2k,j
}1/2]

, (7)

where c−1
r =

∫
K
{(∑r

j=1 u
2
j

)1/2}
du1 · · · dur. See for example Wand and Jones (1995). The

nonparametric Bayes rule assigns x to population 0 if

π0 f̂0(x | t(r)) > π1 f̂1(x | t(r)), (8)
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and to population 1 otherwise. Choice of the bandwidths will be discussed in §2·5.

The fourth classifier for which we discuss our point selection approach is based on a non-

parametric estimator of the regression function g(x | t(r)) = E
{
Ii | Xi(t(r)) = x(t(r))

}
. Let K

be a kernel and, for j = 1, . . . , r, let hj > 0 be a bandwidth. A multivariate kernel regression

estimator of g(x | t(r)) can be defined by

ĝ
(
x | t(r)

)
=

∑n
i=1 IiK

[{∑r
j=1 |x(tj)−Xi(tj)|2/h2j

}1/2]
∑n

i=1 K
({∑r

j=1 |x(tj)−Xi(tj)|2/h2j
}1/2] ; (9)

see Wand and Jones (1995). Motivated by the fact that g(x | t(r)) = pr
{
Ii = 1 | Xi(t(r)) =

x(t(r))
}

, the classifier based on ĝ assigns x to population 0 if ĝ(x | t(r)) < 0.5, and to popu-

lation 1 otherwise.

Finally, the fifth classifier is based on a parametric estimator of the logistic regres-

sion model g(x | t(r)) = E
{
Ii | Xi(t(r)) = x(t(r))

}
= exp{β0 + x(t(r))

Tβ}/[1 + exp{β0 +

x(t(r))
Tβ}], where β0 ∈ R and β ∈ Rr are unknown parameters. The regression curve g(x | t(r))

is estimated by ĝ(x | t(r)), obtained by replacing β0 and β by their least-squares estima-

tors β̂0 and β̂. The classifier assigns x to population 0 if ĝ(x | t(r)) < 0.5 and to popula-

tion 1 otherwise. In practice, for this classifier too, error rate can be estimated directly by

n−1
∑n

i=1 I{J(Xi,D | t(r)) ̸= Ii} instead of by the leave-one-out approach at (1).

Since êrrr can take at most n+ 1 different values, its minimum is not always unique. In the

Supplementary Material, we describe, for each classifier, procedures that can be used to break

ties.

2·5. Bandwidth choice

When calculating the nonparametric regression estimator at (9), we define hj = σ̂jh where σ̂2j

is the empirical variance of the Xi(tj)s calculated from the entire training sample. As in Ferraty

and Vieu (2006), we choose h by a nearest neighbour method. More precisely, we take h = (dk +
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dk+1)/2 where d2k is the kth order statistic of
∑r

j=1 |x(tj)−X1(tj)|2/σ̂2j , . . . ,
∑r

j=1 |x(tj)−

Xn(tj)|2/σ̂2j , and k = k(r, t(r)) is chosen by minimising êrrr with respect to k, for r and t(r)

fixed.

To calculate the kernel density estimators at (7), for k = 0, 1 and j = 1, . . . , r, we take band-

widths hk,j of the form hk,j = σ̂k,jhk, where σ̂2k,j is the empirical variance of the Xi(tj)s

coming from population k, and h0 and h1 are chosen using the nearest neighbour method.

More specifically, h0 = (d0,k + d0,k+1)/2, where d20,k is the kth order statistic of
∑r

j=1 |x(tj)−

Xi(tj)|2/σ̂20,j , for Xi in group 0, and h1 is defined similarly.

In both cases, and as in Ferraty and Vieu (2006), we restrict our search of the number of

neighbours k to a grid. We use the grid [5, n∗/2], where n∗ = n in the regression case, and

n∗ = min(n0, n1) in the density case. In the latter setting, we use the same value of k for both

density estimators. We break ties in the same way as in §2·4.

3. CLUSTERING

In clustering problems, we observe only the functional data X1, . . . , Xn, and the goal is to

cluster them in a certain number, k say, of groups. Unlike the classification case, there are op-

portunities for clustering functional data without any dimension reduction. For example, the L2

metric for functions can sometimes be used to good effect for k-means clustering (Chiou and Li,

2007). Nevertheless, in clustering problems there is a great deal of superfluous information in

functional data. To appreciate why, note that since the functions are generally continuous then,

if t is close to u, X(t) is usually close to X(u), and so clustering on the variables Xi(t) for

i = 1, . . . , n will typically give very similar results to clustering on the Xi(u)s.

This viewpoint motivates the problem of determining the places in the interval I that have

particularly good leverage for clustering. Which parts of the interval are especially useful for
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discriminating between two clusters, and which parts are largely unnecessary because the in-

formation they convey is present in other, nearby places? Answering this question can provide

important practical insight. Moreover, in cases where the experimenter knows what parts of the

curves they consider as being important, knowing what parts of the curves the clustering algo-

rithm focuses on helps identify if the clustering method is appropriate for their problem or not.

We shall answer the question in the case of the popular k-means clustering algorithm. There,

if we reduce each function Xi to the vector Xi(t(r)) =
(
Xi(t1), . . . , Xi(tr)

)T, the following

iterative algorithm is used to determine clusters based on that choice of components. (a) Given an

assignment of data to k clusters, determine the mean or centroid, X̄ℓ(t(r)) say, of the data Xi(t(r))

in the ℓth cluster, for ℓ = 1, . . . , k. (b) Recompute the clusters by assigning each Xi(t(r)) to the

cluster corresponding to the value of X̄ℓ(t(r)) that is nearest to Xi(t(r)). Steps (a) and (b) are

iterated until convergence is achieved. At that point we consider the ℓth cluster, Cℓ(t(r)) say, to

consist of functions Xi, not just the vectors Xi(t(r)), and we write X̄ℓ for the mean, or centroid,

of functions Xi ∈ Cℓ(t(r)). A measure of the tightness of the clusters is given by

Sr(t(r)) =

k∑
ℓ=1

∑
Xi∈Cℓ(t(r))

∥Xi − X̄ℓ∥ ,

where on this occasion ∥ · ∥ denotes the L2 metric on functions. Then Sr(t(r)) is our measure of

the tightness of the clusters when the components of the data functions are determined by t(r).

In this notation, and making the assumption that tighter clusters are better, we use

Tr = inf
t(r)∈Ir

Sr(t(r)) (10)

as our benchmark for performance, and take the most important r-dimensional point t(r) = t̂(r)

to be the one that minimizes Sr(t(r)).
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Empirical algorithms for choosing a particular value, p̂, of r are similar to those suggested

earlier. For example, we can define p̂ as at (2) or (3), using the definition of Tr at (10). We used

(2) with ρ = 0·1.

4. NUMERICAL PROPERTIES

4·1. Full versus sequential approaches

It is tempting to proceed sequentially using a greedy algorithm, and to define first an estimator

t̂1 of the value t1 ∈ I that produces the smallest value of T1. Then, given t̂1, estimate t2 as the

value t̂2 which, when adjoined to t̂1, leads to the smallest value of T2; and so on. This is the

approach taken by Ferraty et al. (2010) in a related problem of functional prediction. However,

it usually does not lead to consistent estimation of the optimal values of tj . That is perhaps

best seen by considering the case p = 2, where it can be shown that, although the pair (t̂1, t̂2)

generally converges in probability to a limit (t′1, t
′
2), the set {t′1, t′2} is usually different from

the pair {t1, t2} that gives optimal prediction of Y from
(
X(t1), X(t2)

)
. The problem is that t′1

was, in a sense, a compromise between t1 and t2, and so by adding a new point t′2 without also

revising the value of t′1 we are incurring performance losses because of the initial compromise.

For similar reasons the sequential algorithm may not even converge.

On the other hand, a full search taking into account, for successively higher values of r, all

possible sequences t(r) = (t1, . . . , tr)
T, can be feasible for r = 1, 2 or 3, but becomes compu-

tationally too costly for higher values of r. We suggest using an approach that makes a com-

promise between the full and the sequential search, as follows. For each r ≥ 1, at step r + 1,

i.e. on going from r points to r + 1 points, first use a sequential approach, adjoining t̂r+1 to the

points t̂1, . . . , t̂r selected at the rth step. Then refine this choice by constructing a neighbour-
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hood around each point t̂1, . . . , t̂r+1, and performing a full search over (t1, . . . , tr+1)
T in that

neighbourhood. Then continue to step r + 2, proceeding similarly.

Another computational saving can easily be made by noticing that neighbouring points t and u

usually have very similar values ofX(t) andX(u), therefore rendering quite inefficient a method

that would consider all possible sequences t(r). Motivated by this, the next paragraph describes

two time-saving simplifications. These are based purely on empirical and computational consid-

erations, and can of course be modified if a visual inspection of the curves suggests that finer

grids should be employed in all or parts of I, for example in areas where X(t) changes rapidly.

However, we believe that our prescription can be used as a default in most cases.

For the sequential part of the algorithm we suggest performing the search for each ti on a grid

of approximately 150 equispaced points over the interval I, and never letting any two points ti

and tj , for i ̸= j, be closer than 2∆t, where ∆t denotes the space between two adjacent points

of the grid. If the curves Xi(t) are observed only for a number L < 150 of t values, then we

replace 150 by L. For the refining part of the algorithm described two paragraphs above, as

r increases we suggest taking shorter and shorter grids, our default being to use, for each tj ,

20 neighbouring points equispaced by 2∆t for r = 2 and r = 3, ten points equispaced by 2∆t

for r = 4, and to perform only a sequential approach for r ≥ 5. Further simplifications can be

made to reduce computational time for r = 4, for example, by performing the multidimensional

refinement on only three of the components. In general we do not expect more than just a few

points to be selected by the procedure. In all the examples on which we tested our method, we

rarely selected more than three or four points. In our experience, such algorithms run reasonably

fast, for example they rarely take more than two minutes of CPU time for n = 100 on a computer

equipped with an Intel Xeon W3520@2.67GHz processor.



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

14 A. DELAIGLE, P. HALL AND N. BATHIA

4·2. Real data illustrations

We applied the five classification methods described in §2·4 on three real datasets. As we shall

see below, overall the methods that performed the best were the nonparametric regression-based

and the logistic regression-based classifiers. The nonparametric Bayes classifier gave results sim-

ilar to the nonparametric regression-based one. However, in small sample sizes the two empiri-

cal bandwidths required by the former often implied that it was beaten marginally by the latter.

Therefore, for brevity, we do not discuss the Bayes classifier below. More detailed results are

available in the Supplementary Material.

For comparison, we also considered classifiers based on functional approaches that project the

data via partial least-squares or principal components; such functional approaches were used by,

for example, Ferraty and Vieu (2006), Leng and Müller (2006), Escabias et al. (2007), Preda et al.

(2007) and Delaigle and Hall (2012). In the partial least-squares case we applied the classifiers of

§2·4 to the setting where, instead of the projecting on t̂1, . . . , t̂p̂, we used the univariate projection∫
I Xiβ̂, where β̂ was the partial least-squares approximation to the slope function of the linear

regression of Ii on Xi. Such classifiers are defined in the same way as in §2·4, except that we

replace the dimension r by 1 and each occurrence of x(tj) and Xi(tj) by
∫
I xβ̂ and

∫
I Xiβ̂,

respectively. As detailed in Delaigle and Hall (2012), the partial least-squares slope estimator β̂

is defined by a linear combination of q basis functions, and we chose q by minimising the cross-

validation estimator of classification error defined in §2. For the linear discriminant, we know

from Delaigle and Hall (2012) that, in a variety of settings, the partial least-squares projection is

optimal. Hence in this case we do not expect our point selection method to improve often on the

performance of the one based on partial least-squares, but the attraction of our approach lies in

the insight brought by the points it selects.
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In the case of principal components we applied the nonparametric regression-based classi-

fier defined in §2·4 in the setting where, instead of projecting on t̂1, . . . , t̂p̂, we used the p-

dimensional projection (
∫
I Xiϕ̂1, . . . ,

∫
I Xiϕ̂p)

T, where ϕ̂1, . . . , ϕ̂p were the first p eigenfunc-

tions obtained by empirical principal component analysis (Hall and Hosseini-Nassab, 2006), and

where p was chosen to minimize the cross-validation estimator of classification error defined in

§2. This classifier is defined by the formula of the fourth classifier described on page 9, if we

replace r by p and each occurrence of x(tj) and Xi(tj) by
∫
I xϕ̂j and

∫
I Xiϕ̂j , respectively.

Finally, using ideas similar to those used in the prediction context by Ferraty and Vieu

(2009), we implemented a boosting version of our nonparametric and logistic regression-

based procedures, by adding to the fitted curve ĝ a nonparametric estimator of the regres-

sion of the fitted residuals on Xi. More precisely, we calculated m̂(x) =
∑n

i=1 ϵ̂iK
(
∥x−

Xi∥/h
)
/
∑n

i=1 K
(
∥x−Xi∥/h

)
, where ϵ̂i = Yi − ĝ(Xi | t(r)) and ∥x∥2 =

∫
I x

2. We took h to

be the kth smallest value of ∥x−X1∥, . . . , ∥x−Xn∥, where k minimized this cross-validation

estimate of classification error of the classifier that assigns a new data function x to population 0

if ĝ(x) + m̂(x) < 0.5, and to population 1 otherwise. Our boosted classifier assigns a new data

function x to population 0 if γ̂(x) < 0.5, and to population 1 otherwise, where γ̂ is, among the

two fitted curves ĝ and ĝ + m̂, the one that leads to the smallest cross-validation estimate of

classification error.

For each of the three datasets, we let N denote the total number of observations, of which

Nk are in group k, for k = 0 and 1. To assess the performance of the classification methods

on a given dataset, we randomly divided the dataset into a training sample of size n and a test

sample of size N − n, for each of n = 30, 50 and 100. Each training sample was obtained by

drawing uniformly n observations, without replacement, from the main dataset. In each case we

generated 200 pairs of training and test samples; for each pair we constructed the classifier from
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the training sample, applied it to classify the observations from the test sample, and calculated

the resulting classification error rate. Each boxplot shown in the figures below was constructed

from 200 such error rates, and so were the tables with additional numerical results, provided in

the Supplementary Material.

All our codes were written in Matlab. Parts of our codes that calculate nonparametric regres-

sion and density estimators reflect the freely available R codes of Ferraty and Vieu (2006). For

the nonparametric estimator we used the bandwidth described in §2·5, and the Epanechnikov

kernel K(u) = (1− u2) 1{|u| ≤ 1}. In each case we took the prior probability equal to 1/2.

Next we describe our datasets. In the rainfall data, which are available at

http://dss.ucar.edu/datasets/ds482.1, we considered N = 190 rainfall

curves from N0 = 43 northern and N1 = 147 southern Australian weather stations, used by

Delaigle and Hall (2010). Each Xi(t) denotes rainfall at time t for the ith weather station, where

t ∈ [0, 365] represents the period that has passed, in a given year, at the time of measurement,

and, as in Delaigle and Hall (2010), rainfall is averaged, by local linear smoothing, over the

years for which the station has been operating. Fig. 1 shows for each group the curves and their

means X̄0 = N−1
0

∑N0
i=1Xi and X̄1 = N−1

1

∑N
i=N0+1Xi.

The Tecator data, available at http://lib.stat.cmu.edu/datasets/tecator,

consist of N = 240 observations of near infrared absorbance spectra of finely chopped meat,

recorded, using a Tecator Infratec Food & Feed Analyzer, at 100 equispaced values of t ranging

from 850 nanometres to 1050 nanometres, and numbered 1 to 100 in the graphs. As usual with

chemometrics data, for i = 1, . . . , 240 we took the curvesXi(t) to be smooth versions of the first

derivative of the spectra; see Remark 1 below. The fat content, Y , of each meat sample was also

available. Since these data had no natural grouping, we artificially split them into two groups.

First, as in Ferraty and Vieu (2006), §8.4.2, we put the N0 = 85 curves for which Y > 20 in
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Fig. 1. Rainfall and Tecator data. First column: rain curves; second column: derivative spectra of the Tecator

data, case I; third column: derivative spectra of the Tecator data, case II. First row: data from group 0; second

row: data from group 1. The mean curves of each group are shown in grey.

group 0, and the remaining N1 = 155 curves in group 1. We refer to this as case I. Then we

considered a more complex case, which we refer to as case II, where we grouped the data so

that the mean curves of the two groups were almost identical. There we put the N0 = 75 curves

for which Y ∈ [10, 25] in group 0, and the remaining N1 = 165 curves in group 1. Since linear

and quadratic discriminant methods are based on mean differences, these classifiers are clearly

inadequate here and cannot give an average classification error rate much lower than 0.5, but

will be included in our discussion for illustrative purposes. Fig. 1 shows the curvesXi(t) and the

mean curves for each group.

The phoneme data are available at www-stat.stanford.edu/ElemStatLearn. Here,

the N = 1717 curves Xi(t), for i = 1, . . . , N , are log-periodograms constructed from 32 mil-

liseconds long recordings of males pronouncing two phonemes: N0 = 695 curves are observa-

tions of the phoneme aa as in dark, and N1 = 1022 curves concern the phoneme ao as in water.
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Fig. 2. Phoneme data. Left: 100 curves from the phoneme aa; middle: 100 curves from the phoneme ao; right:

histogram of points selected by the nonparametric regression-based classifier, calculated for 200 samples when

n = 100. The grey curves are the group means.

Each curve was observed at 256 equispaced frequencies t, denoted on the horizontal axes of the

graphs by 1 to 256. A sample of 100 curves and the means from the two groups are shown in

Fig. 2.

Remark 1. Spectrometric curves are generally very smooth, and to first order they generally

differ from one another mostly by a vertical shift. Taking the derivatives of these curves removes

this shift and permits us to focus on more subtle differences, which can significantly improve the

performance of nonlinear regression methods, as illustrated in Ferraty and Vieu (2006). We found

the same to be true for nonlinear classifiers, which performed poorly with the non differentiated

curves, compared to classifiers based on the first or second derivatives. In such cases the cross-

validation estimate of the classification error, based on the spectra, was usually much larger than

that based on their first or second derivatives. This indicates that practitioners who do not have

sufficient knowledge about properties of their data can be guided by cross-validation to choose

which derivative to work with.

Our numerical investigation revealed some interesting facts. (i) Overall the method that

worked the best was nonparametric regression combined with our point selection approach. In

cases where the two groups were divided in a rather simple way, the three logistic-based tech-
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Fig. 3. Boxplots of classification error rates based on 200 samples. Top left: Tecator data, case I; top right:

Tecator data, case II; bottom left: rainfall data; bottom right: phoneme data. We show boxplots for the nonpara-

metric regression-based methods combined with our approach (NP), with principal components (NPC) or with

partial least-squares (NPLS), the boosting version of NP (NPb), the logistic regression methods combined with

our approach (LOG), with partial least-squares (LOGPLS) and with boosting (LOGb), the linear discriminant

method combined with our approach (LD) and with partial least-squares (LDPLS), and the quadratic discrimi-

nant method (QD). In each group of three boxes, the first is for training samples of size n = 30, the second for

n = 50, the third for n = 100.

niques and the nonparametric method based on partial least-squares performed very well, often

slightly better than the nonparametric procedure based on our point selection method. See the

results for the Tecator case I and phoneme data in Fig. 3. In these cases, the main advantage of

our approach is the additional insight brought by the identification of those points that are most

important for classification. When the groups were created in a more complex way, the non-

parametric method combined with our point selection approach performed best, and sometimes

considerably better than the other approaches. See the results for case II of the Tecator data in

Fig. 3. (ii) The three logistic methods often gave results similar to each other, but the best ones

were those based on our approach, which also has the advantage discussed at (i). (iii) Linear
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Fig. 4. Rainfall and Tecator data. Left: histograms of points selected by the nonparametric regression-based

classifier (top) or the centroid clusterer (bottom) for the rainfall data, calculated from 200 samples, when n =

100. Middle: histograms of points selected by the nonparametric regression-based classifier for the Tecator data,

case I, calculated for 200 samples, when n = 30 (top) or n = 100 (bottom). Right: same as middle, for Tecator,

case II. The grey curves show a constant multiple of the mean curves of each group.

discrimination combined with our approach or with partial least-squares, performed very sim-

ilarly. This shows that our point selection method works particularly well since, for the linear

discriminant method, it is often virtually impossible to beat partial least-squares projection; see

Delaigle and Hall (2012). Again, our approach has the attractiveness discussed in (i).

In Fig. 2. of the Supplementary Material we show graphs indicating the number of points

selected by the nonparametric regression-based classifier. We learn from those figures that our

procedure rarely chooses more than three points. Overall, the number of points selected tended

to increase with sample size. This is connected to the fact that nonparametric methods work well

in higher dimensions only when the sample size is large enough, and cross-validation is able to

detect this.
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For a given method, the number and location of points selected by our procedure varied among

the 200 pairs of samples, but points that had high leverage for classification were selected in

many of these 200 samples. To illustrate this we constructed histograms showing the frequency

at which each point was selected over the 200 test samples, and to visualize the features of

the curves on which our method focused we superimposed a rescaled version of the group mean

curves. Such histograms, for the nonparametric regression-based classifier, are shown in the third

column of Fig. 2 and in Fig. 4. We can see that, for a given dataset, the selected points depend on

the way the groups were created; compare cases I and II of the Tecator data. For rapidly changing

curves, such as with the Tecator dataset, the points frequently selected generally correspond to

a mode or an inflection point of the curves Xi(t). Moreover, the location of the points is quite

sharply determined. For curves that vary more slowly, such as the phoneme or rainfall data,

neighbouring points carry similar information and, as a result, the location of the points is more

widespread. Interestingly, the points selected by the nonparametric regression-based classifier

are different from those selected by the clustering method, which we applied to the same 200

subsamples of sizes n = 30, 50 and 100 for these rainfall data, using the k-means clustering

algorithm described in §3. Remember that when data are clustered, there is no test sample for

which the group is known, and grouping is based only on the X values. The histograms of the

points selected by this method are shown for n = 100 in Fig. 4; similar points were selected for

n = 30 and n = 50.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes a description of procedures

for breaking ties, additional simulation results and all proofs.

APPENDIX: THEORETICAL PROPERTIES

Results in the case of classification

Recall the definitions of errr and êrrr at (4) and (1). Let t0(r) denote the vector that minimizes errr(t(r))

over t(r) ∈ Ir. Technical conditions for the theorems are given at page 24. We assume that the density

estimators used are kernel estimators, in the case of the empirical nonparametric Bayes rule, or, under the

assumption that the data are Gaussian and when Fisher’s linear or quadratic discriminator is employed,

are constructed by maximum likelihood. Of course, many alternative assumptions are possible in the latter

setting, but we make the simplifying Gaussian assumption because Fisher’s discriminators are optimal in

that case.

In Theorems 1 and 2, below, we state properties of the first three classifiers introduced in §2·4. The

properties of the regression-based classifier are identical and can be derived with essentially the same

proofs. Fisher’s linear and quadratic discriminators become unreliable if the covariance matrices Σ̂(t(r))

and Σ̂k(t(r)) used in their construction are close to being singular, so we restrict attention to the set Jr(c)

of r-vectors t(r) ⊆ Ir for which the determinants of the corresponding true covariance matrices exceed

a given, small positive constant c. Analogously, in the case of the empirical nonparametric Bayes rule

we confine ourselves to t(r) in the class Jr(c) for which the true densities fk( · | t(r)), for k = 0, 1, are

bounded above by c−1, and in either case we suppose that, for some η > 0, a sphere centred at t0(r) and of
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radius η is contained in Jr(c). In practical terms these restrictions amount to asking that, for the vectors

t(r) that we consider, none of the components are too close to one another.

Our first result shows that êrr(t(r)) and t̂(r) are consistent for errr(t(r)) and t0(r), respectively. Condi-

tion A is given at page 24 and the proof is given in the Supplementary Material, for the nonparametric

Bayes method. The arguments are similar for the linear and quadratic discriminants.

THEOREM 1. Fix r ≥ 1 and assume that either Condition A holds, in the case of empirical non-

parametric Bayes rule, or the process X is Gaussian and satisfies E{supt∈I |X ′(t)|C} <∞ for some

C > 0, in the context of Fisher’s linear and quadratic discriminators. Then, as n→ ∞, (i) êrr(t(r)) =

errr(t(r)) + op(1) uniformly in t(r) ∈ Jr(c), and (ii) t̂(r) = t0(r) + op(1).

Our next result, a corollary of Theorem 1, shows that error rates of the empirical classifiers, defined

at (5), converge in probability to the minimum error rate suggested by the respective algorithm. In the

theorem, we select p̂ as in (2) and (3), except that we restrict our search to r ≤ r0, where r0 ≥ 1 is a finite

upper bound. That is, we use

p̂ = inf{r ≤ r0 : (1− ρ)Tr ≤ Tr+1} (A1)

or

p̂ = inf{r ≤ r0 : Tr − Tr+1 ≤ ρ T1}. (A2)

This does not change anything in practice, but it makes the proofs considerably simpler. The proof of the

theorem is given in the Supplementary Material, for the nonparametric Bayes method. The arguments are

similar for the linear and quadratic discriminants.

THEOREM 2. Assume that the conditions of Theorem 1 hold for r = 1, . . . , r0 + 1. (i) Define

p = inf
{
r ≤ r0 : (1− ρ) errr

(
t0(r)

)
≤ errr+1

(
t0(r+1)

)}
,
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where the set on the right-hand side is assumed to be non-empty, and suppose that there exists η > 0 such

that

inf
r≤r0

{err(t0(r+1))− (1− ρ) err(t0(r))} > η. (A3)

Then, if p̂ is selected as in (A1), we have, as n→ ∞:

pr(p̂ = p) → 1, erremp → err(t0(p)) . (A4)

(ii) Define

p = inf
{
r ≤ r0 : errr

(
t0(r)

)
− errr+1

(
t0(r+1)

)
≤ ρ err1

(
t0(1)

)}
,

where the set on the right-hand side is assumed to be non-empty, and suppose that there exists η > 0 such

that

inf
r≤r0

{ρ err1
(
t0(1)

)
− errr

(
t0(r)

)
+ errr+1

(
t0(r+1)

)
} > η. (A5)

Then, if p̂ is selected as in (A2), (A4) holds as n→ ∞.

Condition A

Let Ek denote expectation for data from population k, and recall that nk is the number of data pairs

(Xi, Ii) for which Ii = k, where k = 0 or 1, and that c is the small positive constant in the definition

of Jr(c), introduced prior to Theorem 1. Define n = n1 + n2. For simplicity we take the bandwidths

hk1, . . . , hkr to be identical and to equal h = h(n), say, for each r.

Condition A:

(a) The kernelK is a symmetric, compactly supported, univariate probability density satisfying the Hölder

continuity condition |K(u)−K(v)| ≤ C1 |u− v|C2 for constants C1 > 0 and 0 < C2 ≤ 1, and for all

real u and v;

(b) the bandwidth h used when computing f̂−i
k (· | t(r)) and f̂k(· | t(r)), for k = 0, 1, satisfies h = O(n−C3)

and (nhr)−1 = O(n−C3) for some C3 > 0;
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(c) for k = 0 and 1 the ratio nk/n is bounded away from zero as n→ ∞;

(d) X is differentiable on I, Ek[supt∈I {|X(t)|C + |X ′(t)|C}] <∞ for k = 0, 1 and for sufficiently

large C > 0;

(e) the joint densities f0(· | t(r)) and f1(· | t(r)) of
(
X(t1), . . . , X(tr)

)T, in populations 0 and 1 respec-

tively, satisfy supx∈Rr supu(r),v(r)∈Jr(c):∥u(r)−v(r)∥≤ϵ |fk(x |u(r))− fk(x | v(r))| → 0 as ϵ→ 0;

(f) the multivariate distributions of X have the property that, for each ϵ > 0, there exist δ > 0 and n0 ≥ 1

such that, for all n ≥ n0, |err(t(r))− err(t0(r))| > δ whenever ∥t(r) − t0(r)∥ > ϵ and t(r) ∈ Jr(c);

(g) for k = 0 or 1,

lim
ϵ↓0

sup
t(r)∈J (c)

prk

{
|πkfk(X | t(r))− π1−kf1−k(X | t(r))| ≤ ϵ

}
= 0.

Condition A(b) is satisfied by the majority of kernels used in practice. The conditions on h in A(b),

or stronger ones, are conventionally imposed when deriving consistency of nonparametric estimators of

smooth functions of r variables. The other parts of Condition A are self evident.
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