preprints

[19] RAS, C.J., WENG, J., THOMAS, D.A.,
‘A Steiner Tree,  Substitution matrix method for reconstructing phylogenetic trees’


publications

[18] KELAREV,A.., RAS, C.J. and ZHOU, S.,
`Distance labellings of Cayley graphs of semigroups’, accepted by Semigroup Forum.

[17] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
`Exact algorithm for the bottleneck 2-connected k-Steiner network problem’, accepted by Discrete Applied Mathematics.

[16] RAS, C.J.,
`Survivable minimum bottleneck networks’, accepted by Computational Geometry.

[15] BRAZIL, M., RAS, C.J., SWANEPOEL, K. and THOMAS, D.A.,
`Generalised k-Steiner trees in normed planes’, Algorithmica, 71 (2015) 66–86.

[14] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
`A flow-dependent quadratic Steiner tree problem in the Euclidean plane’, Networks, 64(1) (2014) 1–21.

[13] BRAZIL, M., RAS, C.J., SWANEPOEL, K.J. and THOMAS, D.A.,
‘The centroid as an estimate for the quadratic min-power centre’, 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), Groningen, Netherlands, July 2014.

[12] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
‘A geometric characterisation of the quadratic min-power centre’, European Journal of Operational Research, 223(1) (2014) 34-42.

[11] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
`Relay augmentation for lifetime extension of wireless sensor networks’, IET Wireless Sensor Systems, 3(2) (2013) 145–152.

[10] VOLZ, M., BRAZIL, M., RAS, C.J., SWANEPOEL, K. and THOMAS, D.A.,
`The Gilbert arborescence problem’, Networks, 61(3) (2013) 238–247.

[9] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
‘The bottleneck biconnected Steiner network problem’, Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems  (MTNS 2012), Melbourne, Australia, July 2012.

[8] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
`The bottleneck 2-connected k-Steiner network problem for k \leq 2’, Discrete Applied Mathematics,160(7) (2012) 1028–1038.

[7] KING, D., RAS, C.J. and ZHOU, S.,
‘The L(h,1,1)-labelling problem for trees’, European Journal of Combinatorics,31(5) (2010) 1295–1306.

[6] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
`Approximating minimum Steiner point trees in Minkowski planes’, Networks, 56(4) (2010) 244–254.

[5] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
‘A new algorithm for the Euclidean k-bottleneck Steiner problem’, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and  Systems (MTNS 2010), Budapest, Hungary, July 2010, pp. 155-160.

[4] HATTINGH, J.H., JONCK, E. and RAS, C.J.,
‘A characterization of \lambda (d,1)-minimal trees and other attainable classes’, Discrete Mathematics,309(8) (2009) 2340 - 2348.

[3] HATTINGH, J.H., JONCK, E. and RAS, C.J.,
‘A class of full (d,1)-colorable trees’, Australasian Journal of Combinatorics, 45 (2009) 277-289.

[2] BRAZIL, M., RAS, C.J. and THOMAS, D.A.,
‘Deterministic deployment of wireless sensor networks’, Proceedings of the World Congress on Engineering 2009 Vol I (WCE2009), London, UK.