Recall that the geodesic curvature of a curve γ on a surface X is given by the function

$$\kappa_g(s) = \gamma''(s) \cdot (n \times \gamma'(s))$$

where n is the unit normal to X at $\gamma(s)$.

1. Let X be the xy-plane in \mathbb{R}^3. Compute the geodesic curvatures of the following curves:
 (a) The straight line: $\gamma(t) = (at, bt, 0)$.
 (b) The circle of radius a: $\gamma(t) = (a \sin(t), a \cos(t), 0)$.

2. Let X be the sphere in \mathbb{R}^3 of radius a, with parameterisation

 $$r(u, v) = (a \sin(u) \sin(v), a \cos(u) \sin(v), a \cos(v)).$$

 (a) Compute the geodesic curvature of the latitudinal circle $v = v_0$ (that is, v is constant).
 (b) Conclude that the equator is the only latitudinal circle which is a geodesic.
 (c) Why does your computation of the geodesic curvature of the equator disagree with your answer from 1.(b)?

3. Show that if $f : X \to Y$ is an isometry, then $f \circ \gamma$ is a geodesic on Y if and only if γ is a geodesic on X.

4. Use the previous two results to show that every great circle on the sphere is a geodesic.

5. Let X be the torus obtained by revolving the circle of radius b centered at distance a from the origin around the z axis. X has a parameterisation

 $$r(u, v) := (a + b \cos u)(\cos v \mathbf{i} + \sin v \mathbf{j}) + b \sin u \mathbf{k}$$

 You showed in previous practice problems that the unit normal to X is given (up to sign) by

 $$n = \cos u(\cos v \mathbf{i} + \sin v \mathbf{j}) + \sin u \mathbf{k}.$$

 (a) Compute the geodesic curvature of the “horizontal” circle $u = u_0$. For what values of u_0 is it a geodesic?
 (b) Compute the geodesic curvature of the “vertical” circle $v = v_0$. For what values of v_0 is it a geodesic?