1. Compute $H^*(\mathbb{R}P^3 \times \mathbb{C}P^5; k)$ (as a ring) for $k = \mathbb{Z}$ and $\mathbb{Z}/2$.

2. Compute $H^*(\mathbb{R}P^3 \times \mathbb{R}P^2; \mathbb{Z}/2)$ (as a ring).

3. Let X, Y be connected CW complexes with finitely many cells in each dimension.
 (a) Compute $H^*(X \vee Y)$ as a ring, in terms of the rings $H^*(X), H^*(Y)$.
 (b) Show that there is an isomorphism of graded abelian groups
 $$H^*(X \times S^n) \cong H^*(X \vee \Sigma^n X),$$
 where $\Sigma^n X$ is the iterated suspension.
 (c) Show that unless X has the homology of a point, this cannot be an isomorphism of rings. Conclude that there cannot exist a homotopy equivalence
 $$X \times S^n \simeq X \vee \Sigma^n X.$$

4. Let $f : X \to Y$ be a continuous map, $a \in H_p(X), \phi \in H^q(Y)$. Prove that
 $$f_*(f^*(\phi) \cap a) = \phi \cap f_*(a).$$
 Hint: Write out both sides of the equation on the chain level.

5. Let M denote a compact, oriented n-manifold. Let $f : S^n \to M$ be a continuous map of degree d; i.e.,
 $$f_*[S^n] = d[M].$$
 Use the results of the previous problem and Poincaré duality to show: for $0 < q < n$,
 show that every $x \in H_q(M)$ satisfies $d \cdot x = 0$.

6. Use the results of the previous problem to:
 (a) describe all possible degrees of maps $S^n \to T^n$ (the n-torus).
 (b) give a new proof of the fact that every element of $H_q(\mathbb{R}P^{2m+1})$ is 2-torsion, for $0 < q < 2m + 1$.
