Use the simplex method to solve the following standard maximum problem.

Maximise \[g = 12y_2 + 13y_3 \]

subject to \[\begin{align*}
2y_1 + 2y_2 & \leq 6 \\
12y_1 + 6y_2 + 12y_3 & \leq 24 \\
15y_1 & - 16y_3 \leq 8
\end{align*} \]

with \(y_1 \geq 0, y_2 \geq 0 \) and \(y_3 \geq 0 \).

At each step show clearly the row operation(s) that you perform and clearly circle the pivot element. Inspect your final tableau and state the maximum possible value of \(g \) and all the values of \((y_1, y_2, y_3) \) for which this maximum occurs.
We introduce slack variables s_1, s_2, s_3 so that the problem constraints become

$$2y_1 + 2y_2 + s_1 = 6,$$
$$12y_1 + 6y_2 + 12y_3 + s_2 = 24,$$

and $$15y_1 - 16y_3 + s_3 = 8,$$

where $s_1 \geq 0$, $s_2 \geq 0$, and $s_3 \geq 0$.

We rewrite the system as a Simplex Tableaux

$$\begin{array}{cccccccc}
y_1 & y_2 & y_3 & s_1 & s_2 & s_3 & p & \text{RHS} \\
2 & 2 & 0 & 1 & 0 & 0 & 0 & 6 \\
12 & 6 & 0 & 1 & 0 & 0 & 0 & 24 \\
15 & 0 & -16 & 0 & 0 & 1 & 0 & 8 \\
0 & -12 & -13 & 0 & 0 & 0 & 1 & 0 \\
\end{array}$$

\text{Quotients}

$2 = \frac{24}{12}$

\text{pivot column}

$\frac{1}{12} R_2 \rightarrow R_2$

Pivot element is circled.
\[
\begin{bmatrix}
2 & 2 & 0 & 1 & 0 & 0 & 0 & 6 \\
1 & \frac{1}{2} & 1 & 0 & \frac{1}{12} & 0 & 0 & 2 \\
15 & 0 & -16 & 0 & 0 & 1 & 0 \\
0 & -12 & -13 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

16\, R_2 + R_3 \rightarrow R_3

12\, R_2 + R_4 \rightarrow R_4

\[
\begin{bmatrix}
2 & 0 & 1 & 0 & 0 & 0 & 0 & 6 \\
1 & \frac{1}{2} & 1 & 0 & \frac{1}{12} & 0 & 0 & 2 \\
3 & 0 & 0 & 0 & \frac{4}{3} & 1 & 0 & 40 \\
13 & -\frac{11}{2} & 0 & 0 & \frac{13}{12} & 0 & 1 & 26
\end{bmatrix}
\]

- Quotients
 - \frac{6}{2} = 3
 - \frac{3}{12} = \frac{1}{4}
 - \frac{9}{8} = \frac{9}{8}

\frac{1}{2}\, R_1 \rightarrow R_1

\[
\begin{bmatrix}
1 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 3 \\
1 & \frac{1}{2} & 1 & 0 & \frac{1}{12} & 0 & 0 & 2 \\
3 & 8 & 0 & 0 & \frac{4}{3} & 1 & 0 & 40 \\
13 & -\frac{11}{2} & 0 & 0 & \frac{13}{12} & 0 & 1 & 26
\end{bmatrix}
\]

- \frac{1}{2}\, R_1 + R_2 \rightarrow R_2
- 8\, R_1 + R_2 \rightarrow R_3
- \frac{11}{2}\, R_1 + R_4 \rightarrow R_4

pivot column
\[
\begin{bmatrix}
1 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 3 \\
\frac{1}{2} & 0 & 1 & -\frac{1}{4} & \frac{1}{12} & 0 & 0 & \frac{1}{2} \\
23 & 0 & 0 & -4 & \frac{4}{3} & 1 & 0 & 16 \\
\frac{37}{2} & 0 & 0 & \frac{11}{4} & \frac{13}{12} & 0 & 1 & \frac{85}{2}
\end{bmatrix}
\]

STOP since there are no negative elements in bottom row.

We deduce that the maximum value of \(g \) is \(\frac{85}{2} \) occurring at \((y_1, y_2, y_3) = (0, 3, \frac{1}{2})\).

The slack variables at this point have values \((s_1, s_2, s_3) = (0, 0, 16)\).
Answer check: (We note that \(y_1, y_2, y_3 \geq 0 \) at \((y_1, y_2, y_3) = (0, 3, \frac{1}{2})\).)

If we label

\[2y_1 + 2y_2 \leq 6 \quad (i) \]
\[12y_1 + 6y_2 + 12y_3 \leq 24 \quad (ii) \]
\[15y_1 + 16y_3 \leq 8 \quad (iii) \]

We note that at \((y_1, y_2, y_3) = (0, 3, \frac{1}{2})\)

LHS of \((i)\) \(= 2 \times 0 + 2 \times 3 = 6 \leq 6 = \text{RHS of } (i) \)
(and \(s_1 = 0 \)) so \text{OK}.

LHS of \((iii)\) \(= 12 \times 0 + 6 \times 3 + 12 \times \frac{1}{2} \)
\[= 18 + 6 = 24 \leq 24 = \text{RHS of } (ii) \]
(and \(s_2 = 0 \)) so \text{OK}

LHS of \((ii)\) \(= 15 \times 0 - 16 \times \frac{1}{2} = -8 \leq 8 = \text{RHS of } (iii) \)

So \text{OK.} (and \(s_3 = 8 - (-8) = 16 \)).

Now \(g = 12y_2 + 13y_3 = 12 \times 3 + 13 \times \frac{1}{2} \)
\[= 36 + \frac{13}{2} = \frac{72 + 13}{2} = \frac{85}{2} \]
so \text{OK.}