Example (continued)....

We will rewrite the problem constraints as an underdetermined system of equations by introducing a new variable into each equation:

Thus

\[
\begin{align*}
4x_1 + 2x_2 & \leq 2000 \\
2x_1 + 3x_2 & \leq 1500
\end{align*}
\]

becomes

We call \(s_1 \) and \(s_2 \) slack variables, since they absorb the "slack" between the LHS & RHS of the inequalities.

Since LHS "\(\leq \)" RHS, the slack variables must be non-negative. Hence our new system of constraints becomes:

Now let's recalculate the intersections of our constraints but this time we incorporate \(s_1, s_2, s_3, s_4 \).

To do this, we set 2 variables at a time to zero, and calculate the other two.

\((x_1, x_2, s_1, s_2)\)
What do we notice?

1. We have calculated the intersections of our constraints as before. These solutions are called basic solutions.

2. Some of our values are negative – this violates the non-negativity conditions. They correspond to points outside of the feasible region.

Points with non-negative values are called basic feasible solutions – these are the ones that we are interested in.

Points with negative co-ordinates (at least one) are called basic infeasible solutions and we can disregard them.

So now to solve the LP problem, we have a way to list the intersection points and disregard those that are not feasible. We can then evaluate P at the basic feasible solutions to find $P^* \rightarrow$ no graph required!

Problem: Even though we now have a purely algebraic way of dealing with an LP problem – which will work in any dimension – the “size” quickly becomes impractical.

For example, a problem with 3 constraints and 2 decision variables has $4C_2 = 6$ basic solutions. For a problem with 5 constraints and 4 decision variables we have $9C_4 = 126$ basic solutions

(we take $n = \# $ variables (decision + slack) – $m = \# $ equations)

- many of these points will be infeasible.
The Simplex Method.

It is an efficient way of computing the optimal solution - it computes less than 2m basic solutions - all of them feasible.

Example continued -------
We rewrite the problem as

Here we treat the objective function as a constraint.
We move from one basic feasible solution to another, increasing the value of P as we go.
We stop when there are no more such basic feasible solutions.

This is, we have found the optimal solution.

To initiate the algorithm we need a starting basic feasible solution.

Flow Chart:

1. Initial basic feasible solution
2. Method to find another basic feasible solution
3. Method to find a better basic feasible solution
4. Test to see if optimal

IDEA: Interchange basic & non-basic variables to increase P.

The first step is to setup a Simplex Tableau.

So our initial basic feasible solution is

We want to interchange one basic variable with one non-basic variable in such a way that we increase P as much as possible.
For every unit increase in \(x_2 \), we increase \(P \) by 5.

For every unit increase in \(z_2 \), we increase \(P \) by 6.

This suggests that we should choose \(z_2 \) to become a basic variable. We say \(z_2 \) enters the basis.

Now we have to choose which basic variable (\(z_2 \) or \(x_2 \)) will leave the basis.

The second constraint is most restrictive, so we choose \(x_2 \) to leave the basis.

We have moved from one basic feasible solution to another in increasing \(P \) along the way.

How can we incorporate this information into our Simplex Tableau?

<table>
<thead>
<tr>
<th>BV</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(P)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>(s_2)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>(P)</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We now perform a pivot operation to move from one basic solution to the next.

The element circled is called the pivot element. Our first task is to make this a "1".
We can now read off the new basic solution:

So far so good, but what do we do now?
The bottom row says

We know that x_1 and s_2 are currently non-basic variables ($=0$). To increase P, we need to increase x_1 and leave $s_2 = 0$. This suggests that s_1 should enter the basis.

Let's examine the two problem constraints.

Keeping $s_2 = 0$ we have

1. \[\text{We want to increase } x_1 \text{ and keep } s_1 \text{ and } x_2 \text{ non-negative}\]

Equation 1. is most restrictive so we choose s_1 to leave the basis. So our new basic solution is:

The greedy rule chooses column 1 to be the pivot column, the ratio test chooses row 1 to be the pivot row -- so the pivot element is $3\frac{1}{2}$. We now update the tableau again:

<table>
<thead>
<tr>
<th>BV</th>
<th>x_1</th>
<th>x_2</th>
<th>s_1</th>
<th>s_2</th>
<th>P</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pivot operation:

The bottom row now says: