LECTURE 15:
DERIVATIVES

1. Definition of a derivative
2. Basic Rules
3. Product Rule
 Quotient Rule
 Chain Rule
4. Examples.

The derivative of a function is also a function (not a number): we write it as:
(If \(y = f(x) \))

\[f'(x), \frac{dy}{dx}, \frac{df}{dx} \]

which all mean the same thing

... the function obtained by differentiating \(f \) at all points \(x \) in its domain.

2. Calculating derivatives from first principles.

Example: Let \(f(x) = \frac{1}{x} \).
Find \(f'(x) \).

\[f'(x) \]
4. Examples.

1. \(f(x) = e^{3x} \)

2. \(f(x) = 3x^2 + \log_e(5x) \)

3. \(f(x) = x^2 \log_e(x) \).

The Chain Rule.

Let \(y = (f \circ g)(x) \).

\[= f(g(x)) \]

Put \(u = g(x) \).

Then \(y = f(u) \).

We have two ways of writing the Chain Rule:

1. \((f \circ g)'(x) \)

 \[= f''(g(x)) \cdot g'(x) \]

2. \[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]

Either version is OK.

Examples.

1. Let \(y = (x^4 + 5x^6)^5 \).

The answer must be an explicit function of \(x \).

2. Let \(f(x) = \sqrt{x^4 + 3x^2} \).
3: Let \(y = \log_e (4x^3 + 7x^2 + 2x + 1) \)

Now try these:

1. \(y = \sin(x) \cdot (3x^2 + 2x) \)

2. \(y = \frac{x^3 + 2x}{\cos(x)} \)

3. (i) \(y = \sin(x^2) \)
 (ii) \(y = \sin^2(x) \)

4. \(y = \log_e (\sin(x^3 + 2)) \)