Out of 8 - Parts (a) and (b) each out of 4.

(a) (i) We have \(f(x) = x^3 - x^2 - x + 2 \). Stationary points of \(f(x) \) occur where \(f'(x) = 0 \). So
\[
 f'(x) = 3x^2 - 2x - 1 = (3x + 1)(x - 1) .
\]
So \(f'(x) = 0 \) when \(x = -\frac{1}{3} \) or \(x = 1 \). Thus the only stationary point within the interval \((-1, 0)\) is
\[
 x = -\frac{1}{3}.
\]
One way to determine the nature of this stationary point is to use the 2nd derivative test. We have \(f''(x) = 6x - 2 \), so
\[
 f''\left(-\frac{1}{3}\right) = 6\left(-\frac{1}{3}\right) - 2 = -4 < 0
\]
so by the 2nd derivative test, \(x = -\frac{1}{3} \) is a local maximum.

(ii) The absolute maximum and minimum values of \(f(x) \) over \([-1, 0]\) may occur at either a stationary point of \(f \) within the interval, an endpoint of the interval, or a point in the interval where \(f'(x) \) is undefined. Since \(f'(x) \) is defined for all \(x \), we compute
\[
 f\left(-\frac{1}{3}\right) = \left(-\frac{1}{3}\right)^3 - \left(-\frac{1}{3}\right)^2 - \left(-\frac{1}{3}\right) + 2 = \frac{59}{27} = 2\frac{5}{27}
\]
\[
 f(-1) = (-1)^3 - (-1)^2 - (-1) + 2 = 1
\]
and \(f(0) = 2 \).

Therefore

the absolute maximum value of \(f \) over \([-1, 0]\) is \(f\left(-\frac{1}{3}\right) = \frac{59}{27} \),

and the absolute minimum value of \(f \) over \([-1, 0]\) is \(f(-1) = 1 \).

(b) Let \(x \) (in centimeters) denote the side length of the square base of the box, and \(y \) (in centimeters) the height of the box. For the box to physically exist, \(x, y > 0 \). The volume of the box is
\[
 V = x^2 y = 500
\]
which implies \(y = \frac{500}{x^2} \). The surface area of the box is
\[
 S = x^2 + 4xy = x^2 + \frac{2000}{x}.
\]
We want to minimise \(S \) on the interval \(0 < x < \infty \).
To find stationary points of \(S \) we compute:
\[
 \frac{dS}{dx} = 2x - \frac{2000}{x^2} .
\]
So the stationary points satisfy:

\[2x - \frac{2000}{x^2} = 0 \]

\[\Rightarrow 2x = \frac{2000}{x^2} \]

\[\Rightarrow x^3 = 1000 \]

\[\Rightarrow x = 10. \]

We can use the second derivative test to check whether this is a minimum. We have

\[\frac{d^2S}{dx^2} = 2 + \frac{4000}{x^3} \]

which is positive for all \(x > 0 \). Thus \(x = 10 \) is a local minimum point. Since \(\frac{dS}{dx} \) is defined for all \(x \in (0, \infty) \), \(x = 10 \) is the only critical point of \(S \) in this interval, and thus is also the global minimum.

When \(x = 10 \), \(y = 500/(10)^2 = 5 \), and so the dimensions of the box yielding minimum surface area are 10cm by 10cm by 5cm (the height being 5cm).

The minimum surface area is:

\[S(10) = 10^2 + \frac{2000}{10} = 300 \text{ cm}^2. \]