21. Functions of several variables.

Objectives

1. What are they?
 - Some introductory examples.
2. Visualization
3. Partial derivatives

Introduction.

Many problems we encounter in real life depend on more than one variable.

For example,

(i) the area of a rectangle depends on its height and width

\[A(w,h) = w h. \]

(ii) the volume of a cylinder depends on the radius and the height.

\[V(r,h) = \pi r^2 h. \]

(iii) the volume of a box depends on height, length and width.

\[V(w,l,d) = w l d. \]

(iv) A linear programming problem may depend on any number of variables.

\[z = 3x_1 + 2x_2 + 4x_3 + x_4. \]

(Here \(z(x_1, x_2, x_3, x_4) \) is a function of four variables.

In some cases these variables may be related. For example, in the last lecture we considered the surface area of a cylinder.

Although this problem depends on two variables \([r, h]\) in our previous
Examples.

i) \(f(x, y) = 5x^2y + 2x \).
Evaluate \(f \) at the point \((2, 1)\).
\[
\begin{align*}
 f(2, 1) &= 5(2)^2(1) + 2(2) \\
 &= 60 + 4 = 64.
\end{align*}
\]

ii) \(f(x, y) = 5x + \sin(xy) + y^2 \).
Evaluate \(f \) at the point \((3, 0)\).
\[
\begin{align*}
 f(3, 0) &= 5\cdot 3 + \sin(3\cdot 0) + 0^2 \\
 &= 15 + \sin(0) + 0 \\
 &= 9.
\end{align*}
\]

Sketching functions of two variables.

Recall that to sketch a function with one variable, we need 1 axis; we evaluate the function at some point \([x]\), and denote its value by \([y]\).

So the points on the graph of \(f \) are ordered pairs \((x, y)\).

For a function of two variables we need 3 axes; we evaluate the function at the point \([x, y]\) and denote its value as \([z]\).

This gives us a picture in 3-dimensions.

If the function has more than 2 variables, we cannot sketch it.
The graph of a function $f(x,y)$ is called a surface and in general, will be difficult to sketch. However, we can get some idea of the shape of $f(x,y)$ by drawing 2D pictures called level curves or contours of f.

To do this, we let $f(x,y) = $ constant and plot those points (x,y) which are mapped to that constant. In this way we get a 2D cross section of the surface.

Level curves

![Level curves diagram]

Partial derivatives

Recall that for a function of one variable, $y = f(x)$, we defined the derivative of y with respect to x as

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

This was the ratio of the change in y values to the change in x values.

![Partial derivatives diagram]
Functions in 2 variables

For a function \(z = f(x, y) \)
we define
\[
\frac{\partial z}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
\]
- this is the partial derivative
of \(z \) with respect to \(x \).

Here, we are calculating
the ratio of the change in \(z \)
with the change in \(x \). For a
fixed value of \(y \). (\(y \) is constant)

Similarly, we define
\[
\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}
\]
as the partial derivative of
\(z \) with respect to \(y \).

This measures the ratio of the
change in \(z \) with the change in \(y \).

Of course if \(f \) is a function
with \(n \) variables, \(f(x_1, x_2, \ldots, x_n) \)
we can define the \(i \)th
partial derivative of \(f \) with
respect to \(x_i \) as
\[
\lim_{h \to 0} \frac{f(x_1, \ldots, x_i+h, \ldots, x_n) - f(x_1, \ldots, x_n)}{h}
\]

Examples

1. \(z = x^3 + 3xy^2 + y^3 \)
 \(\frac{\partial z}{\partial x} = 3x^2 + 3y^2 \) \(\Rightarrow \) differential wrt \(x \), keeping \(y \) constant.
 \(\frac{\partial z}{\partial y} = 6xy + 3y^2 \) \(\Rightarrow \) differential wrt \(y \), keeping \(x \) constant.

2. \(z = xe^{xy} \)
 \(\frac{\partial z}{\partial x} = e^{xy} + yxe^{xy} \) \(\Rightarrow \) differential wrt \(x \), keeping \(y \) constant.
 \(\frac{\partial z}{\partial y} = xe^{xy} \) \(\Rightarrow \) differential wrt \(y \), keeping \(x \) constant.

3. \(z = \sin(xy) \)
 \(\frac{\partial z}{\partial x} = \cos(xy) \cdot y \) \(\Rightarrow \)
 where \(u = xy \),
 \(\frac{du}{dx} \),
 \(\frac{\partial z}{\partial y} = \cos(xy) \cdot x \)
4. \(z = 5x^2y + 2x \).

Calculate \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) from first principles.

\[
\frac{\partial z}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}
\]

\[
= \lim_{h \to 0} \frac{5(x+h)^2y + 2(x+h) - 5xy^2 - 2x}{h}
\]

\[
= \lim_{h \to 0} \frac{5x^2y + 5x^2h + 2x + 2h - 5xy^2 - 2x}{h}
\]

\[
= \lim_{h \to 0} \frac{5x^2h}{h} = 5x^2.
\]

\[
\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{5x^2y + 5x^2h + 2x - 5x^2y - 2x}{h}
\]

\[
= \lim_{h \to 0} \frac{5x^2h}{h} = 5x^2.
\]

5. \(w = 3x^2y + z^2 + xy + \varepsilon \) (\(w(x,y,z) \))

\[
\frac{\partial w}{\partial x} = 6xy + 0 + yz = 6xy + yz.
\]

\[
\frac{\partial w}{\partial y} = 3x^2 + 0 + xz = 3x^2 + xz.
\]

\[
\frac{\partial w}{\partial z} = 0 + 2z + xy = 2z + xy.
\]

Alternative notation:
When \(y = f(x) \), we say \(\frac{dy}{dx} \) or \(f'(x) \) for the derivative with respect to \(x \).

Here \(z = f(x,y) \), we write \(\frac{\partial z}{\partial x} = f_x(x,y), f_x \)
for the partial derivative with respect to \(x \) and \(\frac{\partial z}{\partial y} = f_y(x,y), f_y \) for the partial derivative with respect to \(y \).

You may now attempt Sheet 8
Q's 2, 4 (i)

1. \(- \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\)

For (i), (ii), (iii), (iv)