22. Functions of several variables

Objectives:

1. Higher order partial derivatives

2. Examples

3. What does it mean geometrically?

Recall that, for functions of one variable \(y = f(x) \), we can calculate the second derivative as

\[
\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2 y}{dx^2},
\]

that is, we differentiate the first derivative.

For a function in two variables \(z = f(x, y) \) we have two first (partial) derivatives \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \).

In this case, we have four second order partial derivatives.

\[
\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2},
\]

\[
\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y},
\]

\[
\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x},
\]

\[
\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2}.
\]

Example

\[
z = x^3 + 3xy^2 + y^4.
\]

(i) \(\frac{\partial z}{\partial x} = 3x^2 + 3y^2 \)

(ii) \(\frac{\partial z}{\partial y} = 6xy + 4y^3 \)

Now

(i) \(\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) \)

\[= \frac{\partial}{\partial x} (3x^2 + 3y^2) = 6x \]

(ii) \(\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) \)

\[= \frac{\partial}{\partial y} (6xy + 4y^3) = 6x + 12y^2 \]
Alternative notation:

Recall that if \(z = f(x,y) \)
then \(\frac{\partial z}{\partial x}, f_x, f_x(x,y) \)
all mean 1st partial derivative
with respect to \(x \) AND
\(\frac{\partial z}{\partial y}, f_y, f_y(x,y) \) all mean
1st partial derivative with
respect to \(y \).

Also
\[
\frac{\partial^2 z}{\partial x^2}, f_{xx}, f_{xx}(x,y) \text{ 2nd p.d. wrt } x
\]
\[
\frac{\partial^2 z}{\partial y^2}, f_{yy}, f_{yy}(x,y) \text{ 2nd p.d. wrt } y
\]

AND
\[
(f_x)_y, (f_y)_x, \frac{\partial^2 z}{\partial y \partial x} \text{ diff. 1st wrt } x \text{ then wrt } y.
\]
\[
(f_y)_x, (f_x)_y, \frac{\partial^2 z}{\partial x \partial y} \text{ diff. 1st wrt } y \text{ then wrt } x
\]

Note that \(f_{xy} = f_{yx} \) here anywazy.

Example

Find the partial derivatives
of \(f(x,y) = \sqrt{16-x^2-y^2} \)
at \((x,y) = (1,3)\).

Solution

Write \(f(x,y) = 16-x^2-y^2 \) as \(f(u) = u^{1/2}, \ u(x,y) = 16-x^2-y^2 \).

Then \(\frac{\partial f}{\partial x} = \frac{df}{du} \frac{\partial u}{\partial x} \)
\[= \frac{1}{2} u^{-1/2} \cdot (-2x) = \frac{-2x}{2(16-x^2-y^2)} \]
\[= -\frac{x}{16-x^2-y^2} \]
The surface \(z = \sqrt{16 - x^2 - y^2} \) is a hemisphere of radius 4.

This calculation is straightforward, but what does it mean?

Notice here that we have two tangents to the surface at the point \(P \)!

(In fact, there is a tangent plane at the point \(P \) — both of these tangent lines are in the same plane.)

Example

Find all 2nd order partial derivatives of \(f(x, y) = x^2 e^{xy^2} \).

Solution

\[
\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left(x^2 e^{xy^2} \right) = 2x e^{xy^2} + x^2 \frac{\partial e^{xy^2}}{\partial x}
\]

Product Rule

\[
= 2x e^{xy^2} + x^2 y^2 e^{xy^2}
\]

\[
\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left(x^2 e^{xy^2} \right) = x^2 \frac{\partial e^{xy^2}}{\partial y}
\]

Product Rule

\[
= 0 + x^2 \cdot 2xy e^{xy^2}
\]

Chain Rule

\[
= 2x^2 y e^{xy^2}
\]
\[
\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(2xe^{xy^2} + x^2y^2e^{xy^2} \right)
= \frac{\partial}{\partial x} \left(2xe^{xy^2} + 2x \frac{\partial e^{xy^2}}{\partial x} + \frac{\partial}{\partial x} x^2y^2e^{xy^2} \right)
= 2e^{xy^2} + 2xe^{xy^2} + x^2y^2 \frac{\partial e^{xy^2}}{\partial x}
= 2e^{xy^2} + 2xe^{xy^2} + x^2y^2 \cdot y^2e^{xy^2}
= e^{xy^2} (2 + 4xy^2 + x^2y^4).
\]

\[
\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(2xe^{xy^2} + x^2y^2e^{xy^2} \right)
= 2x \frac{\partial e^{xy^2}}{\partial y} + x \left(\frac{\partial}{\partial y} e^{xy^2} + y^2 \frac{\partial e^{xy^2}}{\partial y} \right)
= 2xe^{xy^2} + xe^{xy^2} \cdot 2y^2e^{xy^2} + y^2 \cdot 2xe^{xy^2}
= e^{xy^2} (4x^2y + 2xy^2 + 2x^3y^2)
= e^{xy^2} (6x^2y + 2x^3y^2).
\]

\[
\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(2x^3y^2e^{xy^2} \right)
= 2x^3y^2 \frac{\partial e^{xy^2}}{\partial y} + 2x^3y \cdot y^2 \frac{\partial e^{xy^2}}{\partial y}
= 2x^3y^2 \cdot y^2e^{xy^2} + 2x^3y \cdot y^2 \cdot y^2e^{xy^2}
= e^{xy^2} (2x^3 + 6x^2y).
\]

You may now attempt.

Sheet 8
Q1. (second p.d's)
Q4.

Find some more examples in Calculus Books!!