In sections 5 and 6 of this course we were concerned with finding derivatives of functions (or slopes of curves) either explicitly:

\[y = x^4 - 3x^3 + 2x + 1 \]

\[\frac{dy}{dx} = 4x^3 - 9x^2 + 2 \]

\[\left. \frac{dy}{dx} \right|_{x=2} = 32 - 36 + 2 = 2 \]

So the slope of the curve is 2 at (2,2).

Or implicitly: \(\frac{dy}{dx} \)

\[x^3 + 5y^2 = 12 \]

\[\Rightarrow 3x^2 + 10y \cdot \frac{dy}{dx} = 0 \]

\[\Rightarrow \frac{dy}{dx} = \frac{-3x^2}{10y} = \frac{dy}{dx} \bigg|_{x=2} = \frac{-12}{20} = \frac{-3}{5} \]

So the slope of the curve is \(-\frac{3}{5}\) at (-2,2).

Suppose now, that we are given an expression \(\frac{dy}{dx} \), in terms of \(x \) and \(y \).

That is, we know the slope of the curve(s) at any point \((x,y)\) in the plane.

How can we recover the curve? We want to find an expression for \(y \) in terms of \(x \).

A first order differential equation is an equation which involves some unknown function \(f \) (\(y = f(x) \)) and its derivative \(f' (\frac{dy}{dx} \cdot f(x)) \)
Examples.
1. If \(x = f(t) \), then
\[
\frac{dx}{dt} = x^2 + t^2, \\
(\frac{dx}{dt})^2 + \frac{dx}{dt} = t^2
\]
are both first order differential equations.

2. If \(y = f(x) \), then
\[
\frac{dy}{dx} + 3y = 2x^3 + 3x^2, \\
\frac{dy}{dx} = 2xy, \\
y \frac{dy}{dx} = x - y, \quad \text{are 1st order DE's.}
\]

DE's (first order and higher) are used as models for many situations in industry, science, engineering, and economics. The list goes on.

In a physical setting, we often start by knowing the DE (connecting two quantities \(x \) and \(y \)) and from this information we must recover the function \(y = f(x) \).

This function is called the solution to the DE—it is an explicit relation connecting \(x \) and \(y \), such that when substituted into the DE, it becomes an identity.

Example

The DE
\[
\frac{dy}{dx} + 3y = 3x^2 + 2x + 9
\]
has a solution \(y = x^2 + 3 \).

why?
\[
\frac{dy}{dx} = 2x, \quad \text{so}
\]
\[
\frac{dy}{dx} + 3y = 2x + 3\left(x^2+3\right) = 3x^2 + 2x + 9 \quad \text{RHS}
\]

There are two different types of tasks to consider:

1. Verify that a given function is a solution to the DE.
2. Find a solution to the given DE.

Task 1 is straightforward.

Task 2—may not always be possible!
Examples.

1. Show that $y = e^{2x}$ is a solution of $\frac{dy}{dx} = 2xy$.

Step 1.

$y = e^{2x}$

$\Rightarrow \frac{dy}{dx} = 2xe^{2x} \quad (\text{use chain rule})$

RHS$\Rightarrow 2xy = 2x(e^{2x})$

$\Rightarrow \text{LHS} = \text{RHS}$, so $y = e^{2x}$ is a solution of $\frac{dy}{dx} = 2xy$.

2. Show that $y = 5e^{2x}$ is a solution of $\frac{dy}{dx} = 2xy$.

Solution.

Since $y = 5e^{2x}$

1. $\frac{dy}{dx} = 10xe^{2x}$

\Rightarrow RHS$\Rightarrow 2xy = 2x(5e^{2x})$

$\Rightarrow 10xe^{2x}$

So LHS\Rightarrow RHS.

So $y = 5e^{2x}$ is also a solution of $\frac{dy}{dx} = 2xy$.

3. Is $y = e^{2x} + 2$ a solution of $\frac{dy}{dx} = 2xy$?

1. $y = e^{2x} + 2$

$\Rightarrow \frac{dy}{dx} = 2xe^{2x}$

So LHS$\Rightarrow \frac{dy}{dx} = 2xe^{2x}$

RHS$\Rightarrow 2xy = 2x(e^{2x} + 2)$

$\Rightarrow 2xe^{2x} + 4x$

So LHS \neq RHS.

So $y = e^{2x} + 2$ is not a solution of the DE $\frac{dy}{dx} = 2xy$.

It turns out that DE’s have many solutions. In the example above ($\frac{dy}{dx} = 2xy$) any function $y = Ce^{2x}$ is a solution (C is some constant).

$y = Ce^{2x}$

$\Rightarrow \frac{dy}{dx} = 2Cxe^{2x}$

So LHS $\Rightarrow \frac{dy}{dx} = 2Cxe^{2x}$

RHS $\Rightarrow 2xy = 2x(Ce^{2x}) = 2Cxe^{2x}$

So LHS \Rightarrow RHS.

This solution $y = Ce^{2x}$ is called the general solution of this DE.
When we choose a value for C (say 5) the solution
$y = 5e^{2x}$ is called a particular
solution of the DE.

Example.

$y = Ce^{-x^2/4}$ is the G.S of
the DE $\frac{dy}{dx} = \frac{-3x^2}{4} \cdot y$.

Verify: $y = Ce^{-x^2/4}$

(lhs) $\Rightarrow \frac{dy}{dx} = \frac{-3x^2}{4} \cdot Ce^{-x^2/4}$.

and $\frac{dy}{dx} \cdot \frac{du}{dx} \cdot \frac{du}{dx}$ $y = Ce^u$, $u = \frac{-x^2}{4}$

(LHS) $= Ce^u \cdot \frac{-3x^2}{4} = \frac{-3x^2}{4} \cdot Ce^{-x^2/4}$.

Example.

$\frac{dy}{dx} = y$

$y \cdot \frac{1}{2} e^{x-1}$

gives a family of solution curves.
(Editor to start: this is true since for each y value we have the same slope at each point.)

The general solution to this DE is $y = Ce^x$ ($\Rightarrow \frac{dy}{dx} = Ce^x$ so $\frac{dy}{dx} = y$).

Each specific value of C will correspond to a particular solution curve.

Slope Field.

The slope field for a DE is a sketch showing the slope of the curve at various points selected in the plane.

It is usual to select these points in a grid formation and the slope is represented by a short straight line at each point.

We can find out a lot of information about a DE by looking at these slope fields.

A solution curve follows these line segments - any one of which is tangential to a solution curve.

To determine the value of C which corresponds to a particular curve, we need an initial condition.

Suppose that we also know that when $x = 1$, $y = \frac{1}{2}$.

Then $y = Ce^x$

and $\frac{1}{2} = Ce^1$

$\Rightarrow C = \frac{1}{2} e^{-1}$.

So a particular solution is $y = (\frac{1}{2} e^{-1})e^x = \frac{1}{2} e^{x-1}$.

It is the curve which passes through the point $(1, \frac{1}{2})$.
You may now attempt Sheet II

Q 1, 2

Q 3 (the general solution is given in Q 2.)