The Least Spanning Area of a Knot
and the
Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

Hyamfest, July 2011

Based on arXiv:1012.303

Slides available at http://dunfield.info
Knot: A smooth embedding of S^1 in a closed orientable 3-manifold Y.

Spanning surface: If $K = 0$ in $H_1(Y; \mathbb{Z})$, it is the boundary of an orientable embedded surface S.

Problem: Find the least genus $g(K)$ of such an S.

In the 1960s, Haken used normal surfaces to give an algorithm to compute $g(K)$. Here, Y is given as a simplicial complex \mathcal{T}, and K is a loop of edges in \mathcal{T}^1.
The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

Hyamfest, July 2011

Based on arXiv:1012.303

Slides available at http://dunfield.info
Knot: A smooth embedding of S^1 in a closed orientable 3-manifold Y.

Spanning surface: If $K = 0$ in $H_1(Y; \mathbb{Z})$, it is the boundary of an orientable embedded surface S.

Problem: Find the least genus $g(K)$ of such an S.

In the 1960s, Haken used normal surfaces to give an algorithm to compute $g(K)$. Here, Y is given as a simplicial complex \mathcal{T}, and K is a loop of edges in \mathcal{T}^1.
Knot Genus: Given $K \subset T^1$ and $g_0 \in \mathbb{N}$, is $g(K) \leq g_0$?

Agol-Hass-Thurston (2002)

Knot Genus is NP-complete.

Decidable

Exp. time
Is $\dim (Kh_*(K)) \leq 10$?

NP

Is there a hamiltonian cycle?

Are two graphs isomorphic?

Traveling salesman

P
Polynomial time

Is a list sorted?

Is Δ_K monic?

Word prob. in a hyp. group
When Y is simple, e.g. S^3, then Knot Genus should be in $\textbf{NP} \cap \textbf{co-NP}$, and might even be in \textbf{P}.

Least area: Y Riemannian, K null-homologous. By geometric measure theory, there exists a spanning surface of least area.

Discrete version: Assign each 2-simplex in \mathcal{T} an area (in \mathbb{N}), consider spanning surfaces “built out of” 2-simplices of \mathcal{T}.

Least Spanning Area: Given $K \subset \mathcal{T}^1$ and $A_0 \in \mathbb{N}$, is there a spanning surface with area $\leq A_0$?

Least Spanning Area is NP-complete.

Thm (D-H) *When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.*
Algorithm uses linear programming.
Thm (D-H) When \(H_2(Y; \mathbb{Z}) = 0 \), e.g. \(Y = S^3 \), Least Spanning Area can be solved in polynomial time.

Approach:

1. Consider the related Optimal Bounding Chain Problem, where \(S \) is a union of 2-simplices of \(\mathcal{T} \) but perhaps not a surface.

2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time. [Dey-H-Krishnamoorthy 2010]

3. Desingularize the result using two topological tools.
Homology: X a finite simplicial complex, with $C_n(X;\mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: $\partial_n: C_n(X;\mathbb{Z}) \to C_{n-1}(X;\mathbb{Z})$

Homology:

$$H_n(X;\mathbb{Z}) = \frac{\ker(\partial_n)}{\text{image}(\partial_{n+1})}$$
Assign a “volume” to each n-simplex in X, which gives $C_n(X; \mathbb{Z})$ an ℓ^1-norm.

$$\|c\|_1 = \sum |a_i| \text{Vol}(\sigma_i) \quad \text{where} \quad c = \sum a_i \sigma_i$$

Optimal Homologous Chain Problem (OHCP)
Given $a \in C_n(X; \mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $\|c\|_1$ minimal.

Optimal Bounding Chain Problem (OBCP)
Given $b \in C_{n-1}(X; \mathbb{Z})$ which is 0 in $H_{n-1}(X; \mathbb{Z})$, find $c \in C_n(X; \mathbb{Z})$ with $b = \partial_n c$ and $\|c\|_1$ minimal.

Thm (D-H) *OHCP and OBCP are NP-hard.*

OHCP with mod 2 coefficients is NP-hard by [Chen-Freedman 2010].
Dey-H-Krishnamoorthy (2010) When X is relatively torsion-free in dimension n, then the OHCP for $C_n(X; \mathbb{Z})$ can be solved in polynomial time.

Key: Orientable $(n+1)$-manifolds are relatively torsion-free.

Thm (D-H) When X is relatively torsion free in dimension n and $H_n(X; \mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X; \mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.
Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b = q - p \in C_0(X; \mathbb{Z})$, which is 0 in $H_0(X; \mathbb{Z})$. Let $c \in C_1(X; \mathbb{Z})$ be a solution to the OBCP for b.

Claim: c corresponds to an embedded simplicial path.
Rest of desingularization

1. Pass to the exterior of the knot K.

2. Introduce a relative version of the Optimal Bounding Chain Problem.