Function Theory on Symplectic Manifolds - problem session 3

Spoiler alert: Hints are provided in the end. Try to think about the exercises before looking at them.

The Calabi homomorphism

Let \((M,\omega)\) be a symplectic manifold with exact symplectic form, \(\omega = d\lambda\).

1. Prove that the Calabi homomorphism is well-defined, i.e., that \(\text{Cal}(f)\) depends only on \(f \in \text{Ham}(M,\omega)\) and not on the Hamiltonian function generating the flow. Proceed in the following steps:

 (i) First prove that there is a compactly supported function \(S \in C^\infty_c(M)\) such that

 \[
 f^\ast \lambda - \lambda = dS.
 \]

 Show that this \(S\) is unique.

 (ii) Let \(f \in \text{Ham}(M,\omega)\) be the time-one map of the Hamiltonian flow generated by the normalized Hamiltonian \(F_t\). Prove that

 \[
 \text{Cal}(f) = \int_0^1 dt \int_M F_t \omega^n = -\frac{1}{n+1} \int_M S \omega^n.
 \]

 You will need to use the fact that the map

 \[
 i_\xi : \Omega^*(M) \to \Omega^{*-1}(M)
 \]

 is a (graded) derivation, that is

 \[
 i_\xi (\alpha \wedge \beta) = (i_\xi \alpha) \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge i_\xi \beta.
 \]

 (iii) Deduce that \(\text{Cal}(f)\) is well-defined.

2. Prove that \(\text{Cal} : \text{Ham}(M,\omega) \to (\mathbb{R},+)\) is a surjective group homomorphism.
The median quasi-state

Let \(\zeta \) denote the median quasi-state on \(S^2 \).

3. Verify the monotonicity and quasi-linearity axioms on Morse functions.

4. Check that the monotonicity and normalization axioms, together with
\[\zeta(F + c) = \zeta(F) + c \text{ for } F \text{ Morse and } c \in \mathbb{R}, \]
imply that \(\zeta \) is 1-Lipschitz in the uniform norm. Therefore it extends to \(\zeta : C(M) \to \mathbb{R} \). Check that this extension is still monotone.

5. Prove that, for a Morse function \(F \in C^\infty(M) \) and continuous function \(u : \mathbb{R} \to \mathbb{R} \),
\[\zeta(u(F)) = u(\zeta(F)). \]
Deduce that if \(H \in C(M) \), and \(F = u(H) \), \(G = v(H) \) for continuous \(u, v : \mathbb{R} \to \mathbb{R} \), then \(\zeta(F + G) = \zeta(F) + \zeta(G) \). In other words, \(\zeta \) is linear on the closed subalgebra of \(C(M) \) generated by \(H \). This property is called topological quasi-linearity. A functional \(C(M) \to \mathbb{R} \) satisfying the normalization, monotonicity\(^1\) and topological quasi-linearity axioms is called a topological quasi-state (introduced by Aarnes). On closed surfaces, any topological quasi-state is in fact a symplectic quasi-state (Entov-Polterovich), and hence we’ve shown that \(\zeta \) is a symplectic quasi-state.

Hints

1. (i) Suppose that \(\{f_t\} \) is a path in \(\text{Ham}(M, \omega) \) with \(f_0 = 1 \) and \(f_1 = f \). Then
\[f^* \lambda - \lambda = \int_0^1 \frac{d}{dt} f_t^* \lambda \ dt. \]
Use Cartan’s formula for the Lie derivative: if \(X \) is a vector field and \(\alpha \) a differential form,
\[\mathcal{L}_X \alpha = di_X \alpha + i_X d\alpha. \]
Additionally, use that if \(\varphi_t \) is the flow of the vector field \(X_t \), then
\[\frac{d}{dt} \varphi_t^* \alpha = \varphi_t^* \mathcal{L}_X \alpha. \]
Convince yourself you can interchange \(d \) with \(\int dt \).
(ii) \(\omega^n \) is a top form, so \(\alpha \wedge \omega^n = 0 \) for any differential form \(\alpha \). Apply \(i_\xi \) to both sides, for the right \(\xi \) and \(\alpha \).

2. Use the cocycle (product Hamiltonian) formula.

3. For quasi-linearity recall that if \(\{F, G\} = 0 \) then \(G \) is constant along the Hamiltonian flow of \(F \). Use this to show that \(G \) is constant on level sets of \(F \) (this is true only in dimension 2!), and hence descends to the Reeb graph of \(F \).

5. For the first part, \(u(F) \) descends to the Reeb graph of \(F \). For the second, since \(\zeta \) is Lipschitz, you may assume that \(H \) is a smooth Morse function.

\(^1\)In fact, the weaker positivity axiom is required, but monotonicity follows by a theorem of Aarnes.