Function Theory on Symplectic Manifolds - problem session 3

Spoiler alert: Hints are provided in the end. Try to think about the exercises before looking at them.

1. Define an action of \mathbb{T}^n on \mathbb{C}^n by
 $$(t_1, \ldots, t_n) \cdot (z_1, \ldots, z_n) = (e^{2\pi it_1}z_1, \ldots, e^{2\pi it_n}z_n).$$

 Find the associated Poisson commutative subspace $\mathcal{A} \subset C^\infty(\mathbb{C}^n)$.

2. Define an action of \mathbb{T}^n on $\mathbb{C}P^n$ by
 $$(t_1, \ldots, t_n) \cdot [z_0 : z_1 : \ldots : z_n] = [z_0 : e^{2\pi it_1}z_1 : \ldots : e^{2\pi it_n}z_n].$$

 (i) Find the associated Poisson-commutative subspace $\mathcal{A} \subset C^\infty(\mathbb{C}P^n)$. You may want to use (or prove) the fact that the map
 $$\{[z_0 : z_1 : \ldots : z_n] \in \mathbb{C}P^n : z_0 \neq 0\} \to D^{2n}(\frac{1}{\pi}), \quad [z_0 : z_1 : \ldots : z_n] \mapsto (z_1, \ldots, z_n)/||z||^2,$$
 is a symplectomorphism. Here $D^{2n}(\frac{1}{\pi}) \subset \mathbb{C}^n$ is the open $\frac{1}{\pi}$-disc in $\mathbb{C}^n \simeq \mathbb{R}^{2n}$, with the standard symplectic form (compare with question 1.iv from the first problem session), and $||z||^2 = |z_0|^2 + \cdots |z_n|^2$.

 (ii) Prove that the image of the moment map $\Phi : \mathbb{C}P^n \to \mathbb{R}^n$ is the standard n-simplex $\Delta \subset \mathbb{R}^n$.

 (iii) Prove that the preimage of the barycentre of Δ is a stem.

3. Let $\zeta : C^\infty(M) \to \mathbb{R}$ be a symplectic quasi-state, and let τ be the associated quasi-measure. Let $X \subset M$ such that $\tau(X) = 1$. Prove that if $F \in C^\infty(M)$ has $F|_X \equiv c$ then $\zeta(F) = c$.

Hints

1. Start with the case $n = 1$; recall question 1.iv from the first problem session.
2. (i) Use the previous question.

(iii) Prove that permutations of homogeneous coordinates on $\mathbb{C}P^n$ are Hamiltonian
diffeomorphisms (note that $H^1(\mathbb{C}P^n; \mathbb{R}) = 0$). Consider their effect on Δ, and
hence on the fibers of Φ.

3. Reduce to the case $c = 0$ and $F \geq 0$.