Adjoint Sensitivity Analysis for Attribution of Responsibility for Climate Change

Ian G. Enting
MASCOS
The University of Melbourne
Acknowledgments

- The Center of Excellence for Mathematics and Statistics of Complex Systems (MASCOS) is funded by the Australian Research Council (ARC).
- My fellowship at MASCOS is supported by CSIRO through a sponsorship agreement.
- The Fortran-90 development is supported by the ARC Earth System Science Network (ARCNESS).
- Collaborators: Cathy Trudinger and YingPing Wang of CSIRO Marine and Atmospheric Research and members of the MATCH working group on the Brazilian Proposal.

In preparation for ANZIAM 2007
Summary

• Time-scales for the greenhouse effect
 – committed warming

• The Brazilian Proposal
 – setting reduction targets in proportion to responsibility

• Adjoint modelling
 – efficient calculation of sensitivities

• Analysing the Brazilian proposal
 – Who’s to blame for the greenhouse effect?

In preparation for ANZIAM 2007
Timescales

CO_2 concentrations and consequent warming, partitioned according to time of emission.

Lowest bands are from pre-1960 emissions, next from 1960 to 1980 emissions, etc. Increase in contribution to warming after time of emissions from ‘committed warming’ effect.

In preparation for ANZIAM 2007
Brazilian Proposal

Tabled by Brazil during negotiations leading to Kyoto Protocol — Flicked-passed to Subsidiary Body for Scientific and Technical Advice (SBSTA).
Proposes that emission reduction targets should be proportional to nations’ relative responsibility for the greenhouse effect.

Issues:

- Indicator? What quantity is used as a measure of the greenhouse effect?
- For what period of emissions is responsibility attributed?
- How are non-linear responses attributed?

In preparation for ANZIAM 2007
Brazilian Proposal as Derivatives

As example, use indicator $T^* = T_{CO2}(2000) =$ warming in 2000 from CO$_2$ emissions. T^* is to be attributed to emissions $E_j(t)$ from country j with $E(t) = \sum_j E_j(t)$.

Differential attribution to country j of emissions at time t is

$$\frac{\partial T^*}{\partial E_j(t)} E_j(t) = \frac{\partial T^*}{\partial E(t)} E_j(t) = S(t)E_j(t)$$

where $S(t)$ is a Fréchet derivative.

Cumulated attribution: $T^*_j = \int S(t)E_j(t) \, dt$
Aims of adjoint modelling

Aim is to simplify calculations by separating parametric differentiation from model integration, expressed here in terms of Green’s function G of $Lu(\cdot) = f(\cdot)[a]$.

Considers $\nabla_a \langle w(\cdot) | u(\cdot)[a] \rangle$
where $u(\cdot)[a] = Gf(\cdot)[a]$ (or $Lu(\cdot) = f(\cdot)[a]$)

Transforms as
$\nabla_a \langle w(\cdot) | u(\cdot)[a] \rangle = \nabla_a \langle w(\cdot) | Gf(\cdot)[a] \rangle = \nabla_a \langle G^\dagger w(\cdot) | f(\cdot)[a] \rangle = \nabla_a \langle v(\cdot) | f(\cdot)[a] \rangle$
where $v(\cdot) = G^\dagger w(\cdot)$ defines a single function $v(\cdot)$ with no dependence of a.

In preparation for ANZIAM 2007
Principles of adjoint modelling

Given $u(.)[a] = Gf(.)[a]$, where typically $Lu(.)$ is linearisation of a more general model:

Formally:

$$\nabla_a \langle w(.)|u(.)[a] \rangle = \nabla_a \langle w(.)|Gf(.)[a] \rangle = \nabla_a \langle G^\dagger w(.)|f(.)[a] \rangle = \nabla_a \langle v(.)|f(.)[a] \rangle$$

with $v(.) = G^\dagger w(.)$

In practice, used as $Lu(.) = f(.)[a])$

$$\nabla_a \langle w(.)|u(.)[a] \rangle = \nabla_a \langle L^\dagger v(.)|u(.)[a] \rangle = \nabla_a \langle v(.)|Lu(.)[a] \rangle = \nabla_a \langle v(.)|f(.)[a] \rangle$$

with $w(.) = L^\dagger v(.)$ giving equations for adjoint model.

In preparation for ANZIAM 2007
Applying adjoint modelling

Differentiation (only case used in this talk)
\[\nabla_a \langle \omega(.) | Gf(.)[a] \rangle = \nabla_a \langle G^\dagger \omega(.) | f(.)[a] \rangle \]

Gradients for soft constraints.
\[\nabla_a \langle Hu - z | Hu - z \rangle = 2 \nabla_a \langle Hu_0 - z | Hu \rangle = 2 \nabla_a \langle Hu_0 - z | H\mathcal{L}f \rangle = 2 \nabla_a \langle (H\mathcal{L})^\dagger (Hu_0 - z) | f \rangle \]

Gradients, with hard constraints: \(\mathcal{L}u(.) = 0 \)
\[\Theta^* = \Theta - \langle v(.) | \mathcal{L}u(.) \rangle \]

The function \(v(.) \) is the Lagrange multiplier.
\[\nabla_u \Theta^* = \nabla_u \Theta - \nabla_u \langle \mathcal{L}^\dagger | u(.) \rangle, \text{ whence} \]
\[\mathcal{L}^\dagger v(.) = \nabla_u \Theta \text{ — the adjoint equations} \]

In preparation for ANZIAM 2007
Tangent Linear Model (TLM)

For N DEs:

$$ \frac{d}{dt} x_j = g_j(\{x_k\}, a, t) \quad \text{for } j = 1, N $$

we can define sensitivities as

$$ y_j = \frac{\partial}{\partial a} x_j \quad \text{for } j = 1, N \quad \text{or} \quad y_{j,p} = \frac{\partial}{\partial a_p} x_j $$

to give ‘tangent linear model(s)’:

$$ \frac{d}{dt} y_m = \frac{\partial}{\partial a} g_m(\{x_k\}, a, t) + \sum_n \frac{\partial}{\partial x_n} g_m(\{x_k\}, a, t) \ y_n $$

$$ \frac{d}{dt} y_{m,p} = \frac{\partial}{\partial a_p} g_m(\{x_k\}, a, t) + \sum_n \frac{\partial}{\partial x_n} g_m(\{x_k\}, a, t) \ y_{n,p} $$

In preparation for ANZIAM 2007
Analysing the Brazilian Proposal

- Construct simple climate model
- Construct linearisation (e.g. by automatic differentiation)
- Calculate sensitivities, either by brute force application of linearised model or by explicit adjoint model.
- Apply sensitivities to histories of emissions from each nation
- Repeat for all greenhouse gases

In preparation for ANZIAM 2007
Results: Fréchet Derivatives

Assumes IS92a emissions.
Represents temperature by response function. Linear responses for ocean and biotic carbon, coupled non-linearly to atmospheric CO$_2$ (as in CSIRO study).

\[
\frac{\partial}{\partial E(t)} T(\tau) \text{ for } \tau = 2000, 2050, 2100.
\]

Decrease as $t \rightarrow \tau$ shows ‘committed warming’.
At any time, warming from the most recent releases is yet to happen.

In preparation for ANZIAM 2007
Implications

• For a given indicator, T^*, calculation of $S(t)$ allows attribution to any nation.

• $S(t)$ most efficiently calculated from adjoint model, but for multiple indicator times, tangent linear model not too inefficient.

• Sensitivity of T^*_j to model uncertainties can be obtained as second derivatives.

• Sensitivity of T^*_j to uncertainties in emissions can be obtained as

$$\text{Var}[T^*_j] = \int \int S(t) \text{Cov}[E_j(t), E_j(t')] S(t') dt' dt$$
Cumulative responsibility for the fossil CO$_2$ component of warming vs cumulative population.

In preparation for ANZIAM 2007
Concluding remarks

• An interesting example of adjoint sensitivity analysis and automatic differentiation

• The Brazilian Proposal is on the agenda, for formal consideration by Conference of Parties (to the Climate Change Convention) in 2008

• Expert working group is extending calculations to include all major greenhouse gases, with detailed national attribution
Further Information

MATCH website (Brazilian Proposal):
http://www/match-info.net

In preparation for ANZIAM 2007