Automatic Differentiation in the Analysis of Strategies for Mitigation of Global Change

I. Enting

MASCOS
The University of Melbourne
Acknowledgments

The Center of Excellence for Mathematics and Statistics (MASCOS) is funded by the Australian Research Council.

My fellowship at MASCOS is supported by CSIRO through a sponsorship agreement.

Much of this work builds on work with the members of the MATCH working group studying the Brazilian Proposal, particularly Cathy Trudinger of CSIRO Marine and Atmospheric Research.

For MODSIM 2005
Summary

• Modelling global change
• Automatic (algorithmic) differentiation in analysing models
• Algorithmic differentiation in analysing the Brazilian proposal for greenhouse mitigation targets

For MODSIM 2005
Timescales

CO_2 concentrations and consequent warming, partitioned according to time of emission.

Lowest bands are from pre-1960 emissions, next from 1960 to 1980 emissions, etc. Increase in contribution to warming after time of emissions from ‘committed warming’ effect.
Modelling Spectrum

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Carbon Cycle</th>
<th>Climate System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black box</td>
<td>Curve fitting</td>
<td>Curve fitting</td>
</tr>
<tr>
<td>Empirical</td>
<td>Airborne fraction</td>
<td></td>
</tr>
<tr>
<td>Stochastic</td>
<td>Response function</td>
<td>Response function</td>
</tr>
<tr>
<td>Stochastic</td>
<td>Box model</td>
<td>Energy balance model</td>
</tr>
<tr>
<td>Grey box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterministic</td>
<td>Atmos/ocean GCM</td>
<td></td>
</tr>
<tr>
<td>Reductionist</td>
<td>Spatially resolved</td>
<td></td>
</tr>
<tr>
<td>Mechanistic</td>
<td>Earth system model</td>
<td></td>
</tr>
</tbody>
</table>

For MODSIM 2005
Model Analysis

Most common model calculation is forward projection by (numerical) integration of DEs. However many aspects of analysing models involve differentiation:

Sensitivity analysis — derivatives with respect to parameters;

Calibration — techniques such as Maximum Likelihood imply optimisations, facilitated by use of derivatives;

Data assimilation — real-time model adjustment — dynamic calibration.
Tangent Linear Model (TLM)

For a model expressed as N DEs:

$$\frac{d}{dt} x_j = g_j(\{x_k\}, \alpha, t) \quad \text{for } j = 1, N$$

we can define sensitivities as

$$y_j = \frac{\partial}{\partial \alpha} x_j \quad \text{for } j = 1, N$$

to give ‘the tangent linear model’:

$$\frac{d}{dt} y_m = \frac{\partial}{\partial \alpha} g_m(\{x_k\}, \alpha, t) + \sum_n \frac{\partial}{\partial x_n} g_m(\{x_k\}, \alpha, t) y_n$$
Algorithmic Differentiation (AD)

Differentiation by successive use of chain rule. For binary operation $c = f(a, b)$,

$$\frac{\partial c}{\partial \alpha} = \frac{\partial f}{\partial a} \ast \frac{\partial a}{\partial \alpha} + \frac{\partial f}{\partial b} \ast \frac{\partial b}{\partial \alpha}$$

e.g.

$c = a + b \quad \rightarrow \quad \frac{\partial c}{\partial \alpha} = \frac{\partial a}{\partial \alpha} + \frac{\partial b}{\partial \alpha}$

$c = a \ast b \quad \rightarrow \quad \frac{\partial c}{\partial \alpha} = b \ast \frac{\partial a}{\partial \alpha} + a \ast \frac{\partial b}{\partial \alpha}$

Convert program to code for derivatives, one operation at a time.
Computational Complexity of AD

For \(u_k \rightarrow x_j(t) \rightarrow y_j \), Jacobian is: \(J_{jk} = \frac{\partial y_j}{\partial u_k} \)

\[
J_{jk} = \sum \frac{\partial y_j}{\partial x_n(T)} \cdot \cdots \cdot \frac{\partial x_n(t)}{\partial x_{m'}(t-1)} \cdot \cdots \cdot \frac{\partial x_n(1)}{\partial x_n(0)} \cdot \frac{\partial x_n(0)}{\partial u_k}
\]

Tangents: \(\frac{\partial y_n}{\partial \alpha} = \sum_k J_{jk} \frac{\partial u_k}{\partial \alpha} \)

TLM is successive product of vector \(\times \) sparse matrix.

Gradients: \(\frac{\partial \phi}{\partial u_k} = \sum_j J_{jk} \frac{\partial \phi}{\partial y_j} \)

Adjoint model achieves efficiency of vector \(\times \) sparse matrix by using chain rule backwards in time.

For MODSIM 2005
Approaches to AD

Hand-code program to calculate derivatives — laborious, error-prone and must be repeated each time the model changes.

Symbolic algebra (e.g. Mathematica) — problematic for adjoints.

Tangent/adjoint compilers — transform source into code for tangent or adjoint models.

Operator overloading to produce a ‘script’ that is analysed to give code for the derivatives.

Use operator overloading capabilities directly — straightforward for tangent-linear-model, but restricted applicability to adjoint models.
Operator Overloading

Replace real variable x, (type `double`), with composite variable \tilde{x} (type `Xvar`), representing both value x and its derivatives with respect to K model quantities, α_k as:

$$
\tilde{x}_0 = x \quad \text{and} \quad \tilde{x}_k = \frac{\partial}{\partial \alpha_k} x \quad \text{for } k = 1, K
$$

Operator overloading implements $\tilde{c} = \tilde{a} \ast \tilde{b}$, representing:

$$
\tilde{c}_0 = \tilde{a}_0 \ast \tilde{b}_0 \quad \text{and} \quad \tilde{c}_k = \tilde{a}_0 \ast \tilde{b}_k + \tilde{a}_k \ast \tilde{b}_0
$$

Overloaded functions, $\tilde{c} = f(\tilde{a})$, represent:

$$
\tilde{c}_0 = f(\tilde{a}_0) \quad \text{and} \quad \tilde{c}_k = f'(\tilde{a}_0) \ast \tilde{a}_k
$$

where $f'(.)$ denotes the derivative of $f(.)$.
Class Definitions

Fragment of C++ class definition to implement operator overloading:

class Xvar{
public :
static const int ns = _NUMDERIVS+1;
double xs[_NUMDERIVS+1];
Xvar operator*(Xvar);
...
};

Xvar Xvar::operator*(Xvar b){
 Xvar c;
 for (int i=1; i < ns; i++)
 c.xs[i] = xs[i]*b.xs[0]+xs[0]*b.xs[i];
 c.xs[0] = xs[0]*b.xs[0];
 return c; }
...

For MODSIM 2005
Brazilian Proposal

Tabled by Brazil during negotiations leading to Kyoto Protocol — Flicked-passed to Subsidiary Body of Scientific and Technical Advice (SBSTA). Proposes that emission reduction targets should be proportional to nation’s relative responsibility for the greenhouse effect.

Issues:

- Indicator? What quantity is used as a measure of the greenhouse effect?
- For what period of emissions is responsibility attributed?
- How are non-linear responses attributed?
Brazilian Proposal as Derivatives

As example, use indicator $T^* = T_{CO2}(2100) =$ warming in 2100 from CO$_2$ emissions.

T^* is to be attributed to emissions $E_j(t)$ from country j with $E(t) = \sum_j E_j(t)$.

Differential attribution to country j of emissions at time t is

$$\frac{\partial T^*}{\partial E_j(t)} E_j(t) = \frac{\partial T^*}{\partial E(t)} E_j(t) = S(t) E_j(t)$$

where $S(t)$ is a functional derivative.

Cumulated attribution: $T_j^* = \int S(t) E_j(t) \, dt$
Assumes IS92a emissions. Represents temperature by response function. Linear responses for ocean and biotic carbon, coupled non-linearly to atmospheric CO₂ (as in CSIRO study).

\[\frac{\partial}{\partial E(t)} T(\tau) \] for \(\tau = 2000, 2050, 2100 \).

Decrease as \(t \to \tau \) shows ‘committed warming’. At any time, warming from most recent releases is yet to happen.

For MODSIM 2005
Implications

• For a given indicator, T^*, calculation of $S(t)$ allows attribution to any nation.

• $S(t)$ most efficiently calculated from adjoint model, but for multiple indicator times, tangent linear model not too inefficient.

• Sensitivity of T_j^* to model uncertainties can be obtained as second derivatives.

• Sensitivity of T_j^* to uncertainties in emissions can be obtained as

$$\text{Var}[T_j^*] = \int \int S(t) \text{Cov}[E_j(t), E_j(t')] S(t') \, dt' \, dt$$
Conclusions

Algorithmic differentiation —
Operator overloading is a straightforward way of developing tangent linear models (and obtaining higher derivatives if needed).

Brazilian Proposal —
Attribution in terms of derivatives is readily calculated using algorithmic differentiation. Higher derivatives give sensitivities.

Global change —
Potential should extend to other analyses of uncertainties in global change.

For MODSIM 2005
Further Information

Algorithmic Differentiation —

Brazilian Proposal — MATCH website:

http://www/match-info.net

My site:

http://ms.unimelb.edu.au/~enting/brazil.html

This study — Extended abstracts from MODSIM 2005.