TWISTED CHEVALLEY GROUPS

JON XU

1. Introduction

The goals of this document are the following:

1. Construct Chevalley groups from Lie algebras, following [Ste67, §1 to §3].
2. Construct twisted Chevalley groups from Chevalley groups, following [Ste67, §11].

Goal (1) is covered in Sections 2 to 5. Goal (2) is covered in Section 6. The main reference is [Ste67]. The necessary prerequisites on Lie algebras can be found in [Ser87].

A running example will be:

1. Constructing the Chevalley group $GL_n(F_{q^2})$ from the Lie algebra gl_n.
2. Constructing the twisted Chevalley group $U_n(F_{q^2})$ from the Chevalley group $GL_n(F_{q^2})$.

2. Root Systems and Simple Systems

Let

\mathfrak{g} be a semisimple Lie algebra over \mathbb{C},
\mathfrak{h} a Cartan subalgebra,
$\mathfrak{h}^* = \text{Hom}(\mathfrak{h}, \mathbb{C})$ the dual of \mathfrak{h}.

Fix $\alpha \in \mathfrak{h}^*$. The α weight space of \mathfrak{g} is the set

$\mathfrak{g}^\alpha = \{ x \in \mathfrak{g} \mid [x, h] = \alpha(h)x, \text{ for } h \in \mathfrak{h} \}$.

A root is an $\alpha \in \mathfrak{h}^*$ such that $\mathfrak{g}^\alpha \neq 0$. The root system of \mathfrak{g} is the set

$R = \{ \alpha \in \mathfrak{h}^* \mid \alpha \text{ is a root} \}$

The root space decomposition [Ser87, §VI.1.1] of \mathfrak{g} is

$\mathfrak{g} = \mathfrak{h} \bigoplus \bigoplus_{\alpha \in R} \mathfrak{g}^\alpha$

A simple system for R is a linearly independent set S in the vector space \mathfrak{h}^* such that if $\alpha \in S$ then

$\alpha \in \sum_{\alpha' \in S} \mathbb{R}_{\leq 0} \alpha' \quad \text{or} \quad \alpha \in \sum_{\alpha' \in S} \mathbb{R}_{\leq 0} \alpha'$

Date: August 27, 2013.
Proposition 1. Let \(\mathfrak{gl}_n \) be the Lie algebra of \(n \times n \) matrices over \(\mathbb{C} \) with the Lie bracket defined by \([x, y] = xy - yx \) for all \(x, y \in \mathfrak{gl}_n \). Then \(\mathfrak{gl}_n \) has a Cartan subalgebra \(\mathfrak{h} \) consisting of all the diagonal matrices in \(\mathfrak{gl}_n \), so
\[
\mathfrak{h} = \mathbb{C}E_{11} \oplus \mathbb{C}E_{22} \oplus \ldots \oplus \mathbb{C}E_{nn},
\]
where \(E_{ij} \) is the matrix with 1 in the \((i, j)\)-entry and 0 elsewhere.

Proof. The set of diagonal matrices is a nilpotent and self-normalizing subalgebra of \(\mathfrak{gl}_n \). These two conditions are sufficient to show that \(\mathfrak{h} \) is a Cartan subalgebra, following the definition in [Ser87, §3.1]. □

Proposition 2. Let \(\mathfrak{h} \) be the Cartan subalgebra of \(\mathfrak{gl}_n \) given in Proposition 1. Let \(\epsilon_k \in \mathfrak{h}^* \) be the linear functional defined by \(\epsilon_k(E_{ll}) = \delta_{kl} \) for \(k, l \in \{1, 2, \ldots, n\} \). Then the root system of \(\mathfrak{g} \) corresponding to \(\mathfrak{h} \) is
\[
\Sigma = \{ \epsilon_i - \epsilon_j \mid i, j \in \{1, 2, \ldots, n\} \text{ and } i \neq j \}.
\]

Proof. We need to show:
(1) If \(\alpha \in \Sigma \) then \(\mathcal{L}_\alpha \neq 0 \).
(2) If \(\mathcal{L}_\alpha \neq 0 \) for some \(\alpha \in \mathcal{H}^* \) then \(\alpha \in \Sigma \).

Proof of (1): Let
\[
X = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
& \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{nn}
\end{bmatrix} \in \mathcal{L}
\]
Note that
\[
E_{ij}E_{kl} = \delta_{jk}E_{il}
\]
and
\[
[E_{ij}, E_{kl}] = \delta_{jk}E_{il} - \delta_{li}E_{kj}
\]
for all \(i, j, k, l \in \{1, 2, \ldots, n\} \). Also, note that
\[
[X, H] = \alpha(H)X
\]
for all \(H \in \mathcal{H} \) if and only if
\[
[X, E_{kk}] = \alpha(E_{kk})X
\]
for all \(k \in \{1, 2, \ldots, n\} \). Also, we have
\[
[X, E_{kk}] = XE_{kk} - E_{kk}X
\]
\[
= \begin{bmatrix}
x_{1,k} & 0 & \cdots & -x_{k,k-1} & \cdots & -x_{k,n} \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
x_{k+1,k} & \cdots & \cdots & \cdots & \cdots & x_{n,k}
\end{bmatrix}
\]
Let \(\epsilon_i - \epsilon_j \in \Sigma \). We claim that \(E_{ij} \in \mathcal{L}_{\epsilon_i - \epsilon_j} \).
For all $k \in \{1, 2, \ldots, n\}$ we have
\[
(\epsilon_i - \epsilon_j)(E_{kk})(E_{ij}) = (\delta_{ik} - \delta_{jk})(E_{ij}) = \begin{cases} E_{ij} & \text{if } i = k \\ -E_{ij} & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}
\]
Hence
\[
[E_{ij}, E_{kk}] = (\epsilon_i - \epsilon_j)(E_{kk})(E_{ij})
\]
for all $k \in \{1, 2, \ldots, n\}$ and so $\mathcal{L}_{\epsilon_i - \epsilon_j} \neq 0$.

Proof of (2): Suppose
\[
\alpha = \alpha_1 \epsilon_1 + \alpha_2 \epsilon_2 + \ldots + \alpha_n \epsilon_n \in \mathcal{H}^*
\]
for some $\alpha_i \in \mathbb{C}$ with $\mathcal{L}_\alpha \neq 0$. Let
\[
X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix} \in \mathcal{L}_\alpha
\]
with $X \neq 0$. Then for all $k \in \{1, 2, \ldots, n\}$ we have
\[
\begin{bmatrix} x_{1,k} \\ \vdots \\ x_{k-1,k} \\ 0 \\ -x_{k,k+1} \\ \vdots \\ x_{n,k} \end{bmatrix} = \begin{bmatrix} \alpha_1 x_{11} & \alpha_1 x_{12} & \cdots & \alpha_1 x_{1n} \\ \alpha_1 x_{21} & \alpha_1 x_{22} & \cdots & \alpha_1 x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 x_{n1} & \alpha_1 x_{n2} & \cdots & \alpha_1 x_{nn} \end{bmatrix}.
\]
Suppose $k \in \{1, 2, \ldots, n\}$. If $\alpha_k \neq 0$ then deleting row k and column k of X gives the zero matrix.

Furthermore, if $\alpha_k \neq 1$ and $\alpha_k \neq -1$ then $x_{l,k} = \alpha_k x_{l,k}$ and $x_{l,l} = -\alpha_k x_{l,l}$ for all $l \in \{1, 2, \ldots, n\}$, so $X = 0$, a contradiction. Hence for all $k \in \{1, 2, \ldots, n\}$ we have $\alpha_k \in \{-1, 0, 1\}$.

If $\alpha_k = 1$, then $x_{k,1} = x_{k,2} = \ldots = x_{k,n} = 0$.

If $\alpha_k = -1$, then $x_{k,1} = x_{k,2} = \ldots = x_{k,n} = 0$.

If $\alpha_k = 0$, then we have
\[
x_{k,1} = x_{k,2} = \ldots = x_{k,n} = 0 = x_{1,k} = x_{2,k} = \ldots = x_{n,k}
\]
extcept possibly $x_{kk} \neq 0$. Suppose $\alpha \neq \epsilon_i - \epsilon_j$ for all $i, j \in \{1, 2, \ldots, n\}$ with $i \neq j$.

Then there would be at least two positive coefficients of the ϵ_k or at least two negative coefficients of the ϵ_k in the expression

\[
\alpha = \alpha_1 \epsilon_1 + \alpha_2 \epsilon_2 + \ldots + \alpha_n \epsilon_n
\]
Suppose that the coefficients α_k and $\alpha_{k'}$ of ϵ_k and $\epsilon_{k'}$ are positive with $k \neq k'$, $k, k' \in \{1, 2, \ldots, n\}$. We show that this leads to a contradiction. A similar proof holds in the case of negative coefficients. Let $X \in \mathcal{L}_\alpha$ with $X \neq 0$. Then
\[
x_{k,1} = x_{k,2} = \ldots = x_{k,n} = 0 = x_{k',1} = x_{k',2} = \ldots = x_{k',n}
\]
Furthermore, deleting row \(k \) and column \(k \) of \(X \) gives the zero matrix, and also deleting row \(k' \) and column \(k' \) of \(X \) gives the zero matrix. The previous two facts combined force \(\mathcal{X} \) to be zero, contradicting \(\mathcal{X} \neq 0 \). Hence \(\alpha = \epsilon_i - \epsilon_j \) for some \(i, j \in \{1, 2, \ldots, n\} \) with \(i \neq j \).

A subset \(\Pi \subseteq \Sigma \) is called a simple system for \(\Sigma \) if [Ste67, pg. 266]:

1. \(\Pi \) is a linearly independent set.
2. Every root is a linear combination of the elements of \(\Pi \) in which all nonzero coefficients are either all positive or all negative.

Example 3. A simple system for the root system \(\Sigma \) of \(\mathcal{L} = \mathfrak{gl}_n \) is

\[
\Pi = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \ldots, \epsilon_{n-1} - \epsilon_n\}
\]

Proof. Proof of (1). Suppose

\[
a_1(\epsilon_1 - \epsilon_2) + a_2(\epsilon_2 - \epsilon_3) + \ldots + a_{n-1}(\epsilon_{n-1} - \epsilon_n) = 0.
\]

for some \(a_1, a_2, \ldots, a_n \in \mathbb{R} \). Then

\[
a_1\epsilon_1 - a_1\epsilon_2 + a_2\epsilon_2 - a_2\epsilon_3 + \ldots + a_{n-1}\epsilon_{n-1} - a_{n-1}\epsilon_n = 0.
\]

Since \(\{\epsilon_1, \epsilon_2, \ldots, \epsilon_n\} \) is a linearly independent set, we have

\[
a_1 = a_2 = a_3 = \ldots = a_{n-1} = a_{n-2} = a_{n-1} = 0.
\]

Therefore

\[
a_1 = a_2 = \ldots = a_{n-1} = 0.
\]

So \(\Pi \) is a linearly independent set. Hence (1) is satisfied.

Proof of (2). Let \(\epsilon_i - \epsilon_j \in \Sigma \) with \(i, j \in \{1, 2, \ldots, n\} \) and \(i \neq j \).

If \(i < j \) then \(\epsilon_i - \epsilon_j = (\epsilon_i - \epsilon_{i+1}) + (\epsilon_{i+1} - \epsilon_{i+2}) + \ldots + (\epsilon_{j-1} - \epsilon_j) \).

If \(j < i \) then

\[
\epsilon_i - \epsilon_j = -(\epsilon_j - \epsilon_i)
\]

\[
= -(\epsilon_j - \epsilon_{j+1}) - (\epsilon_{j+1} - \epsilon_{j+2}) - \ldots - (\epsilon_{i-1} - \epsilon_i)
\]

Hence (2) is also satisfied.

Weyl Groups. The root system \(\Sigma \) of a Lie algebra \(\mathcal{L} \) generates \(\mathcal{H}^* \) as a vector space over \(\mathbb{C} \) [REFERENCE?]. Write \(V \) for \(\mathcal{H}^*_\mathbb{Q} \), the vector space over \(\mathbb{Q} \) generated by the roots. Then \(\dim_{\mathbb{Q}} V = \ell \), where \(\ell \) is the rank of the Lie algebra \(\mathcal{L} \).

Let \(\gamma \in V \). Since the Killing form is nondegenerate (?), there exists a \(H'_\gamma \in \mathcal{H} \) such that \((H, H'_\gamma) = \gamma(H) \) for all \(H \in \mathcal{H} \), where \((\cdot, \cdot) \) is (WHAT?). Define \((\gamma, \delta) = (H'_\gamma, H'_\delta) \) for all \(\gamma, \delta \in V \) [Ste67, pp. 1-2].

For all nonzero \(\alpha, \beta \in V \), define

\[
\langle \alpha, \beta \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)}
\]

For each root \(\alpha \in \Sigma \), define a linear operator \(w_\alpha \in GL(V) \) by

\[
w_\alpha(p) = p - \langle p, \alpha \rangle \alpha
\]

for all \(p \in V \). The group generated by

\[
\{w_\alpha \mid \alpha \in \Sigma\}
\]

is called the Weyl group of \(\mathcal{L} \) [Ste67, pg. 2].
If \(\{\alpha_1, \alpha_2, \ldots, \alpha_\ell\} \) is a simple system of roots, then \(W \) is generated by the \(w_{\alpha_i} \) for \(i = 1, 2, \ldots, \ell \). Furthermore, every root is congruent under \(W \) to a simple root [Ste67, pg. 2].

Example 4. The Weyl group \(W \) of \(L = \mathfrak{gl}_n \) is generated by the matrices

\[
\begin{align*}
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
& & \ddots \\
& & & 1
\end{bmatrix}, \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
& & & \ddots \\
& & & & 1
\end{bmatrix}, \\
\vdots \\
\begin{bmatrix}
1 & & & & \\
& \ddots & & & \\
& & 1 & & \\
& & & 0 & 1 \\
& & & 1 & 0
\end{bmatrix},
\end{align*}
\]

Hence \(W \cong \operatorname{Sym}(n) \).

3. Chevalley Bases

Theorem 5. [Ste67, pg. 6] There exists a choice of \(H_i \in \mathcal{H} \) with \(i \in \{1, 2, \ldots, \ell\} \) and \(X_\alpha \in \mathcal{L}_\alpha \) such that they form a basis for \(\mathcal{L} \) relative to which the defining relations are as follows:

1. \([H_i, H_j] = 0 \)
2. \([H_i, X_\alpha] = \langle \alpha, \alpha_i \rangle X_\alpha \)
3. \([X_\alpha, X_{-\alpha}] = H_\alpha = \text{an integral linear combination of the } H_i \).
4. \([X_\alpha, X_\beta] = \pm (r + 1)X_{\alpha + \beta} \text{ if } \alpha + \beta \text{ is a root, where } r \text{ is defined on } [\text{Ste67, pg. 3}] \).
5. \([X_\alpha, X_\beta] = 0 \text{ if } \alpha + \beta \neq 0 \text{ and } \alpha + \beta \text{ is not a root.} \)

A basis chosen as in Theorem 5 is called a *Chevalley basis*.
Example 6. The following matrices form a Chevalley basis for $L = \mathfrak{gl}_n$

\[
H_1 = \text{diag}(1, 0, \ldots, 0)
\]
\[
H_2 = \text{diag}(0, 1, \ldots, 0)
\]
\[
\vdots
\]
\[
H_\ell = \text{diag}(0, 0, \ldots, 1)
\]
\[
X_{\varepsilon_i - \varepsilon_j} = E_{ij} \text{ for all } i, j \in \{1, 2, \ldots, n\}, i \neq j
\]

4. CHEVALLEY GROUPS

Let U be the universal enveloping algebra of L. [REFERENCE?]
Let $U_\mathbb{Z}$ be the \mathbb{Z}-subalgebra of L generated by
\[
\left\{ \frac{X_\alpha^m}{m!} \mid m \in \mathbb{Z}_{\geq 1}, \alpha \in \Sigma \right\}
\]

For each root $\alpha \in \Sigma$, choose $X_\alpha \in L_\alpha$ as in Theorem 5. Let V be a vector space over \mathbb{C}. A finitely generated (free abelian) subgroup M of V which has a \mathbb{Z}-basis which is a \mathbb{C}-basis for V is called a lattice in V.

Example 7. $V = \mathbb{C}^n$, $M = \mathbb{Z}^n$.

[Ste67, pg. 13] From now on, let V be a representation of L. [Ste67, pg. 20] Let k be a field and define

\[V^k = M \otimes_\mathbb{Z} k\]

Example 8. For $V = \mathbb{C}^n$, $M = \mathbb{Z}^n$ we have $V^k = \mathbb{Z}^n \otimes_\mathbb{Z} k$.

We wish to study automorphisms of V^k of the form $\exp(tX_\alpha) (t \in k, \alpha \in \Sigma)$ where

\[\exp(tX_\alpha) = \sum_{n=0}^{\infty} \frac{t^n X_\alpha^n}{n!}\]

[Ste67, §3] explains the above definition.

Write $x_\alpha(t)$ for $\exp(tX_\alpha)$ and X_α for the group $\{x_\alpha(t) \mid t \in k\}$. The group generated by all $X_\alpha (\alpha \in \Sigma)$ is called the Chevalley group constructed from (L, V, M, k).

Example 9. Let $k = \mathbb{F}_q^2$ where \mathbb{F}_q^2 is a field with q^2 elements, q a prime power. Let $V = \mathbb{C}^n$ be the standard representation of $L = \mathfrak{gl}_n$. Then

\[V^k = \mathbb{Z}^n \otimes_\mathbb{Z} \mathbb{F}_q^2 \cong \mathbb{F}_{q^2}^n\]

so that the action of L on V^k is the same as the action of \mathfrak{gl}_n on V.

Fix $u \in \mathbb{F}_q^2$. Now

\[x_{\varepsilon_i - \varepsilon_j}(u) = \exp(uX_{\varepsilon_i - \varepsilon_j})\]
\[= I + uX_{\varepsilon_i - \varepsilon_j} + \frac{u^2 X_{\varepsilon_i - \varepsilon_j}^2}{2!} + \ldots\]
\[= I + uE_{ij} + \frac{u^2 E_{ij}^2}{2!} + \ldots\]
\[= I + uE_{ij}.\]
Therefore, the Chevalley group constructed from $(\mathfrak{gl}_n, \mathbb{C}^n, \mathbb{Z}^n, \mathbb{F}_{q^2})$ is generated by
\[\{ I + tE_{ij} \mid t \in \mathbb{C}, i, j \in \{1, 2, \ldots, n\}; i \neq j \} \]
This group is called the general linear group $GL_n(\mathbb{F}_{q^2})$.

5. Automorphisms of Chevalley groups

Definition 10. Let $\Sigma \subseteq V$ and $\Sigma' \subseteq V'$ be root systems. A linear transformation $\tau : V \to V'$ is a morphism of root systems if
1. $\alpha \in \Sigma$ implies $\tau(\alpha) \in \Sigma'$.
2. $\langle \alpha, \beta \rangle = \langle \tau(\alpha), \tau(\beta) \rangle'$ for all $\alpha, \beta \in \Sigma$, where $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle'$ are the Cartan products on V and V' respectively.

Our definition of a morphism of root systems follows [Aut10] (Where is Steinberg’s definition?). Our Cartan product is
\[\langle \alpha, \beta \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)} \]
for all $\alpha, \beta \in \Sigma$.

Let G be a Chevalley group over a field k of characteristic p.

Proposition 11. If G is realised as a group of matrices and γ is an automorphism of k, then the map $\gamma : x_\alpha(u) \mapsto x_\alpha(u^\gamma)$ on Chevalley generators extends to an automorphism θ of G.

Definition 12. An automorphism θ as in Proposition 11 is called a field automorphism [Ste67, pg. 168].

Proposition 13. Let τ be an angle preserving permutation of the simple roots Π with $\tau \neq 1$. Assume all roots are equal in length. Then there exists an automorphism ψ of G and signs ε_α ($\varepsilon_\alpha = 1$ if α or $-\alpha$ is simple) such that
\[\psi x_\alpha(u) = x_{\tau\alpha}(\varepsilon_\alpha u) \]
for all $u \in k$ and $\alpha \in \Sigma$.

Definition 14. An automorphism ψ as in Proposition 13 is called a graph automorphism [Ste67, pg. 157].

Definition 15. Let σ be an automorphism of a Chevalley group G that is a composition of a field automorphism θ and a graph automorphism ψ. Also, suppose that, if ρ is the corresponding permutation of the roots, then:
1. If ρ preserves lengths, then $\text{ord}(\theta) = \text{ord}(\rho)$.
2. If ρ does not preserve lengths, then $p\theta^2 = 1$, where p is the map $x \mapsto x^p$.

Such an automorphism σ is called a twisting automorphism [Ste67, my definition, see pg. 177].

6. Twisted Chevalley groups

Definition 16. Let σ be a twisting automorphism of a Chevalley group G. The subgroup G_σ of G consisting of all elements in G fixed by σ is called a twisted Chevalley group.
Example 17. By Example ??, the Lie algebra \(\mathfrak{gl}_4\) has root system
\[
\Sigma = \{\epsilon_i - \epsilon_j \mid i \neq j; i, j \in \{1, 2, 3, 4\}\}.
\]
By Example 3, the root system \(\Sigma\) has simple system 3
\[
\Pi = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \epsilon_3 - \epsilon_4\}
\]
Let \(F_{q^2}\) be a field with \(q^2\) elements where \(q\) is a prime power. Let \(G = GL_4(F_{q^2})\) be the Chevalley group constructed from \((\mathfrak{gl}_4, C^4, Z^4, F_{q^2})\). Let
\[
V' = \mathbb{Q}\Pi = \mathbb{Q}\{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \epsilon_3 - \epsilon_4\}
\]
The linear transformation \(\tau : V \to V\) defined by
\[
\begin{align*}
\epsilon_1 - \epsilon_2 &\mapsto \epsilon_3 - \epsilon_4 \\
\epsilon_2 - \epsilon_3 &\mapsto \epsilon_2 - \epsilon_3 \\
\epsilon_3 - \epsilon_4 &\mapsto \epsilon_1 - \epsilon_2
\end{align*}
\]
is an automorphism of the root system \(\Sigma \subseteq V'\). By Proposition 13, the map \(\tau\) gives rise to a graph automorphism \(\psi\) of \(G\).

Define the Frobenius automorphism \(\gamma\) on \(F_{q^2}\) by \(u^{\gamma} = u^q\) for all \(u \in F_{q^2}\). By Proposition 11, the Frobenius automorphism gives rise to a field automorphism \(\theta\) of \(G\).

Let \(\sigma\) be the automorphism of \(G\) defined by
\[
\sigma = \psi \circ \theta
\]
The automorphism \(\sigma\) satisfies (1) and (2) in Definition 15, so \(\sigma\) is a twisting automorphism.

The twisted Chevalley group \(G_\sigma\) consisting of all elements of \(G\) fixed by \(\sigma\) is called the finite unitary group and is denoted by \(U_4(F_{q^2})\).

Next: Chevalley generators of \(U_4\) from Chevalley generators of \(GL_4\)?

References