1. The symbol \(n! \) means the product \(n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \). For example, \(5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \). Find \(n \) such that \(n! = 2^{15} \times 3^6 \times 5^3 \times 7^2 \times 11 \times 13 \).

Solution: We look first for prime factors. Since \(n! \) has a factor of 13 and no factor of 17, we conclude that \(13 \leq n < 17 \). Since 5 is a factor, so must 15 be (we only get factors of 5 from 5, 10, 15 etc.). Thus \(n = 15 \) or \(n = 16 \).

Let’s check the number of factors of 2 in 16! We get one factor of 2 from 2, 6, 10 and 14, we get two factors of 2 from 4 and 12 and three factors of 2 from 8 and four from 16, giving a total of 15 factors of 2, as found in \(n! \). Thus \(n = 16 \).

2. The symbol \(\lfloor x \rfloor \) means the greatest integer less than or equal to \(x \). Thus \(\lfloor 5.7 \rfloor = \lfloor 5.3 \rfloor = \lfloor 5 \rfloor = 5 \). Calculate the sum \(\lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \ldots + \lfloor \sqrt{48} \rfloor + \lfloor \sqrt{49} \rfloor + \lfloor \sqrt{50} \rfloor \).

Solution: For \(k \) a positive integer such that \(k^2 \leq n < (k+1)^2 \), so that \(k \leq \sqrt{n} < k+1 \) and so \(\lfloor \sqrt{n} \rfloor = k \). Thus for \(1 \leq n \leq 3, \lfloor \sqrt{n} \rfloor = 1 \), and for \(4 \leq n \leq 8, \lfloor \sqrt{n} \rfloor = 2 \), and for \(9 \leq n \leq 15, \lfloor \sqrt{n} \rfloor = 3 \), etc. So the sum equals \(3(1) + 5(2) + 7(3) + 9(4) + 11(5) + 13(6) + 2(7) = 217 \).

3. The sequence of numbers \(\ldots, a_{-3}, a_{-2}, a_{-1}, a_0, a_1, a_2, a_3, \ldots \) is defined by \(a_n = (n+1)a_{n-2} - (n+3)a_{n-1} \), for all integers \(n \). Calculate \(a_0 \).

Solution: From the recurrence, we observe that there are only two choices of \(n \) which result in equations containing \(a_2 \), \(n = 0 \) or \(n = 2 \). These give \(a_0 - a_2 = 9 \), and \(a_2 - 3a_0 = 25 \) respectively. Adding these together gives \(-2a_0 = 34 \) or \(a_0 = -17 \).

4. The triangle \(\triangle ABC \) is equilateral and the radius of its inscribed circle is 1. The line \(DE \) is drawn through \(C \), parallel to \(AB \), such that \(AEDB \) is a rectangle. A circle is drawn through the four vertices of the rectangle. What is its radius?

Solution: We first calculate the side length of the equilateral triangle \(ABC \). Let \(O \) be the centre of the smaller circle, and \(P \) the point of tangency of the circle to the side \(AB \). Join \(OP \) and \(OB \). Then \(\angle OBP = 90^\circ \) by tangency, and \(\angle OBP = 30^\circ \) by symmetry since \(\angle CBA = 60^\circ \). Since \(OP = 1 \) and \(\triangle BOP \) is a right-triangle, \(OB = 2, BP = \sqrt{3} \), and hence \(AB = 2\sqrt{3} \). Also, by symmetry \(CO = OB = 2 \), so \(CP = 3 \).

Now, since \(ABDE \) is a rectangle, \(AE = CP = 3 \), and \(BE \) is a diameter of the circumscribed circle. By Pythagoras, \(BE^2 = AE^2 + AB^2 = 21 \), so the diameter is \(\sqrt{21} \).
5. The octagon $P_1P_2P_3P_4P_5P_6P_7P_8$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_1P_3P_5P_7$ is a square of area 5 and the polygon $P_2P_4P_6P_8$ is a rectangle of area 4, find the maximum possible area of the octagon.

Solution: Here is an elegant solution, using complex numbers, due to D. J. Bernstein. The circle circumscribes a square of area 5, so the circle has radius $\sqrt{5}/2$. Hence the rectangle has sides $\sqrt{2}$ and $\sqrt{8}$. Without loss of generality, assume that P_2P_4 has length $\sqrt{2}$. Put P_2, P_4, P_6, P_8 into the complex plane at $\sqrt{2}(1/2 + i)$, $\sqrt{2}(-1/2 + i)$, $\sqrt{2}(1/2 - i)$. Put P_1 in the complex plane at $\sqrt{5}/2\exp(i\theta)$; then P_3, P_5, P_7 are at $i\sqrt{5}/2\exp(i\theta)$, $-\sqrt{5}/2\exp(i\theta)$, $-i\sqrt{5}/2\exp(i\theta)$. The triangles $P_8P_1P_2$ and $P_4P_5P_6$ each have area $\sqrt{5}\cos\theta - 1$. The triangles $P_2P_3P_4$ and $P_6P_7P_8$ each have area $\sqrt{5}/4\cos\theta - 1$. Hence the octagon has area $3\sqrt{5}\cos\theta$. The maximum possible area is achieved at $\theta = 0$, and is $3\sqrt{5}$.

6. Three distinct points with integer coordinates lie in the plane on a circle of radius $r > 0$. Show that two of these points are separated by a distance of at least $r^{1/3}$.

Solution: This solution is due to D. Rusin. We first use the standard result that a triangle with sides a, b, c and circumscribing circle of radius r has area $abc/4r$. If $a, b, c < r^{1/3}$ then the area is less than $1/4r$; but the area is at least $1/2$ since the points have integer coordinates. (Also, $r \geq \frac{1}{2}$.) Hence two of these points are separated by a distance of at least $r^{1/3}$.

7. A *king* in the game of chess is allowed to move only one square at a time, either up or down, left or right, or to one of the four neighbouring diagonal squares. In this problem we consider the more restricted case of a king that cannot move downwards. The only allowed steps are up, to the right, or diagonally up and to the right. Let $r(n+1)$ denote the number of possible paths from the bottom-left square to the top-right square of such a restricted king, on an $(n+1) \times (n+1)$ board. For example, $r(2) = 3$, corresponding to up-right, right-up, and a single diagonal step. Show that

$$r(n+1) = \sum_{l=0}^{n} \binom{n}{l} \binom{2n-l}{n},$$

and hence, or otherwise, that $r(n+1)$ is the coefficient of x^n in the expansion of $(1 - 6x + x^2)^{-1/2}$.

Solution: This solution is due to P. Grossman. If the king makes no diagonal moves, then he makes n horizontal and n vertical moves, for a total of $2n$. Each diagonal move reduces the total number of moves by one. Therefore, if l denotes the number of diagonal moves, the king makes $2n - l$ moves in total.
Of these $2n - l$ moves, n must be either horizontal or diagonal, since these are the moves that take the king to the next file on the board. These can be chosen in ${2n-l \choose n}$ ways. Of these n moves, l are diagonal, and these can be chosen in ${n \choose l}$ ways. Therefore the total number of ways the king can move using l diagonal moves is the product of these two terms, which must then be summed over all possible values of l to give the required result.

This part of the solution is due to M. Hirschhorn. Construct the generating function

$$
\sum_{n \geq 0} r(n + 1)x^n = \sum_{n \geq 0} \sum_{l=0}^{n} \binom{n}{l} \binom{2n-l}{n} x^n
$$

$$
= \sum_{l \geq 0} \sum_{n \geq l} \binom{n}{l} \binom{2n-l}{n} x^n
$$

$$
= \sum_{l \geq 0} \sum_{m \geq 0} \binom{m+l}{l} \binom{2m+l}{m+l} x^{l+m}
$$

$$
= \sum_{l,m \geq 0} \binom{2m}{m} \binom{2m+l}{2m} x^{l+m}
$$

$$
= \sum_{m \geq 0} \binom{2m}{m} x^m (1 - x)^{-2m-1}
$$

$$
= (1 - x)^{-1} \sum_{m \geq 0} \binom{2m}{m} \left(\frac{x}{(1-x)^2} \right)^m
$$

$$
= (1 - x)^{-1} \left(1 - \frac{4x}{(1-x)^2} \right)^{-\frac{1}{2}}
$$

$$
= [(1-x)^2 - 4x]^{-\frac{1}{2}} = (1 - 6x + x^2)^{-\frac{1}{2}}
$$