On the connectivity of Visibility Graphs

Michael Payne
Attila Pór
Pavel Valtr
David R. Wood

FU Berlin - 21/7/11
Def: The visibility graph $V(P)$ of a finite set $P \subseteq \mathbb{R}^2$ has P as its vertices and two points are adjacent if they ‘see’ each other, i.e., no other point of P lies on the line segment between them.
Visibility graphs are useful: eg. Szekely's proof of Szemerédi-Trotter Theorem.

'Apply crossing lemma to vis. graph.'

Clique number vs. chromatic number:

3 \implies 3 \quad [k\alpha z, Poi, Wood]

6 \rightarrow \text{unbounded.} \quad [Pfender]

Big lie - big clique conjecture: [k, p, w]

Every sufficiently large point set in \mathbb{R}^2 contains either t collinear points or a clique of size k.

(True for $k \leq 5$ and $k=6, t=3$.)

Edge Connectivity

Visibility graphs have diameter \(\leq 2 \).

Diameter 2 graphs have \(\lambda = 5 \) [Plesnik, 75]

In visibility graphs, edge cuts of size 5 only appear around a vertex.

Diameter 2 graphs with 5-cuts not around a vertex look like this:
Vertex Connectivity

There are visibility graphs with \(k \leq 5 \).

\[
\begin{align*}
K &= 2n + 1 \\
K &\approx \frac{2S}{3} \\
S &= 3n + 1 \\
(n=4)
\end{align*}
\]

Def. The *visibility graph* \(B(A,B) \) of two disjoint point sets \(A \) and \(B \) is the bipartite subgraph of \(V(A \cup B) \) induced by \(A \) and \(B \).
Thm: Let A and B be disjoint sets such that $A \cup B$ has at most l points on a line. Then $B(A,B)$ has a plane subgraph with at least $\frac{n-1}{l-1}$ edges. ($n = |A \cup B|$)

Cor: If $P \subseteq \mathbb{R}^2$ with $|P| = n$ and at most l points on a line, then $V(P)$ is $\frac{n-1}{l-1}$-connected.

Idea of proof: (of Theorem)
Then: Let A and B be disjoint sets of n points such that $A \cup B$ is not on a line. Then $B(A,B)$ has a plane subgraph with at least $n+1$ edges.

Cor: If $P \subseteq \mathbb{R}^2$ does not lie on a line, then $V(P)$ has $K \geq \frac{5}{2} + 1$.

If C separates A from B then
$$g \leq |A| + |C| - 1 \text{ and } |C| \geq |A| + 1.$$
Theorem: Let A and B be disjoint sets of n points such that $A \cup B$ is not on a line. Then $B(A,B)$ has a plane subgraph with at least $n+1$ edges.

Outline of Proof: Induction on n. (Base case $n=2$).

Case (i): There is a line L containing n points.

Use: Lemma: Let A' lie on a line L' and B' have no points on L' with $|A'| \geq |B'|$. Then $B(A',B')$ has a plane subgraph with $|A'| + |B'| - 1$ edges.

Set: $L' = L$, $A' = A \cap L \geq B \cap L$, $B' = B \setminus L$.

We get $|A'| + |B'| - 1 \geq n - 1$ edges.

Need 2 more:

- One along L.

- $(A \cap L = B \cap L)$ can add one far away from L.

Then: Let A and B be disjoint sets of n points such that $A \cup B$ is not on a line. Then $B(A,B)$ has a planar subgraph with at least $n+1$ edges.

Case (ii) \exists such a line. Apply the Ham Sandwich Theorem to find a line h with at most half of each set on each side. Assign points on h as follows: so that each side gets $\lceil \frac{n}{2} \rceil$ of each set. Applying induction on both sides gives $n+2$ edges. We need only delete one to avoid overlaps on h.
Thm: For $t = 4$, $k \geq \frac{2}{3} s$.

The proof requires the following interesting lemma:

Lem: Let G_1, G_2 be properly coloured plane straight line graph drawings, separated by a line. Then a non-crossing properly coloured edge can be added between them.

Example:

Conj: $k \geq \frac{2}{3} s$ always.
Connectedness of Bivisibility Graphs

Lem: A ∪ B not on a line. T a triangle with vertices a ∈ A, b ∈ B, c ∈ A ∪ B. Then a or b has a neighbour in B(A, B) in T \ {a, b}.

Thm: B(A, B) not on a line. Then B(A, B) has at most one component that is not an isolated vertex.
Thm: \(B(A,B) \) not on a line. Then \(B(A,B) \) has at most one component that is not an isolated vertex.

Pf: 1. Suppose \(\exists \) two components with an edge.
 - Choose \(ab, a'b' \) so that \(\text{conv}(\{a, b, a', b'\}) =: C \) is minimal.
 - If \(a, b, a', b' \) are on a line, use closest pt.
 - Otherwise wlog \(a, b \) are vertices of \(C \).
 - Apply Lemma (with \(C = a' \) or \(b' \)).
 - If neighbour is not \(c \) then \(C \) was not minimal.