Look up the definitions of the following objects in the book: function (also called “map”), domain (also called “source”), target, image, graph, well-defined, injective (also called “one-to-one”), surjective (also called “onto”), bijective (also called “one-to-one correspondence”).

(1) Consider the map

\[f: \mathbb{N} \rightarrow \mathbb{N} \]
\[x \mapsto 2x. \]

(Here we used the notation “\(x \mapsto 2x \)” for “\(f(x) = 2x \).”)

(a) What is the image of \(f \)?
(b) Is \(f \) surjective?
(c) Is \(f \) injective?

(2) Let \(X \) and \(Y \) be the sets

\[X = \{a, b, c, d\} \]
\[Y = \{a, b, e\} \]

Draw the graph of each of the following, decide whether it is a well-defined map and if so, whether it is injective, surjective or bijective: (It it possible that several or none of these hold.)

\[f: X \rightarrow Y \]
\[a \mapsto b \]
\[b \mapsto c \]
\[c \mapsto a \]
\[d \mapsto b \]

\[g: X \rightarrow Y \]
\[b \mapsto e \]
\[c \mapsto a \]
\[d \mapsto b \]

Date: September 7, 2005.
h: Y → X
 a ↦ b
 b ↦ a
 e ↦ a

i: Y → X
 a ↦ b
 b ↦ c
 a ↦ a
 e ↦ d

j: Y → X
 a ↦ b
 b ↦ c
 e ↦ d

Try to formulate for a general map f what the properties “well-defined”, “injective”, “surjective” or “bijective” mean for the graph.

(3) Let now X and Y be arbitrary sets, and let $f: X \to Y$ and $g: Y \to X$ be two maps. The map g is called a right inverse to f, if (and only if) for every element y of Y the equality

$$y = f(g(y))$$

holds. The map g is called a left inverse to f, if (and only if) for every element x of X the equality

$$x = g(f(x))$$

holds. The map g is called an inverse of f, if (and only if) it is both a right and left inverse of f.

Prove the following statements:
(a) A map f is surjective if and only if there exists a right inverse of f.
(b) A map f is injective if and only if there exists a left inverse for f.
(c) A map f is bijective if and only if there exists an inverse of f.