Now a scheme picture where all this is from.
It came from trying to understand \mathbb{E}_2 of Λ.

What is that? H^0 of some sheaves on moduli stack of formal G-spaces.
What does that stack look like?

$$\text{spec}(k)$$

rather simple stack: affine scheme

Interested in the equivariant cohom of this (X/k).

If I want to understand $H^*_G(X)$
try to break it up into the orbits of the G-action, build space
from cohom of orbits

$\Rightarrow H^*_G(X)$.

Each of these orbits is G/H.
do this for moduli stack of formal gps you fact that you are doing exactly the Lubin-Tate story

$\ell(p - \text{subspace def by } p = 0$& complement
$\ell/p_{\ell} \text{gps } @ \text{all isom}

\Rightarrow only one orbit when
we remove $p = 0$, nilgps $G/p G/p$

H = autom G/p.

Now lets look at the thing we removed: we reduced mod p
& there is \bar{G}. If we ignore it, all the groups are isom &
$1 - 1 = \text{Morava stabilizer } G/p$

(...)

If you really want to set up that spectral sequence, you need the
E_2 def things to come in
gave beautiful picture with all
different periodicities, on's --
& people wanted to make this
more geometric
Ravenel conjectures
E_n, want stabilizer to actually act on this

MoraVa's annals paper
Ravenel green

A k-dim example: $k(\cdot)$ - matrices
$G_0 = GL(k) \times GL(k)$
also matrices are in same orbit \cong
they have same rank
so the open O of max rank is big open subset $\text{det} \neq 0$
then there are also ones of the $k-1$

reason for going to O's
looking at $H^*(E_n, \mathbb{Z})$ with mor.
stable O

- E_2 - term of $S. S. \Rightarrow
- K(\mathbb{Z})$ - local $\frac{\pi}{n-1}(\mathbb{C})^n$
\[E_n \xrightarrow{\text{alg., chrom. sp. sec.}} E_{n+1} \xrightarrow{\text{geom., chrom. spec. sec.}} \]

\[\cdots \]

\[\text{Ext}^n_{\mathbb{H}_0}(\mathbb{H}^{2n}, \mathbb{H}^{2n}) \xrightarrow{\text{in}} \mathbb{H}^{2n} \]

\[E^0: \text{separate out} \]

\[\text{Wanted to separate out the part where the finite subgroups come in (they give you stuff in large cohomological dimension).} \]

\[\text{Can compute everything about them, but they retain some non-normal info.} \]

\[\text{Try } R \text{ versus } R_0 \text{ to compute} \]