Dijkstra: Introduction

Finding distance in weighted graphs (This topic is in the course reader.)

In the section on Steiner trees, it was necessary to find the distance graph $D_G(N)$, which is determined by the distances between the vertices in N.

In 1959, Dijkstra gave an algorithm for finding distances from a vertex u_0 to all other vertices in a weighted graph. In fact, it gives a tree with root vertex u_0, such that the tree contains shortest paths from u_0 to all other vertices in the graph.

At intermediate stages of the algorithm, there is the following structure in the graph

When this structure is known, we can choose the vertex $v \in \bar{S}$ with lowest label: there can be no shorter path to any vertex in \bar{S}. Hence $d(u_0, v) = \ell(v)$. Thus we can update by adding v to S.

This leads to the following:

Dijkstra’s Algorithm (determines distance from u_0 to all other vertices in a weighted graph G, along with a tree determining shortest paths from u_0)

1. Set $\ell(u_0) := 0, \ell(v) := \infty$ for all $v \neq u_0$,
 $i := 0, S := \{u_0\}, \bar{S} := V(G)\{u_0\}$

2. while $i < |V(G)| - 1$ do the following: (i.e do it $|V(G)| - 1$ times)
 (a) (relabeling vertices in \bar{S})
 For each edges $u_i v$ with $v \in \bar{S}$,
 if $\ell(v) > \ell(u_i) + w(u_i v)$, set $\ell(v) := \ell(u_i) + w(u_i v)$
 and PARENT(v) = u_i
 (this makes v have a label of the length of the shortest path via u_i, if that is shorter than all paths previously found).
 (b) (choose the next u_{i+1})
 Choose $v \in \bar{S}$ minimising $\ell(v)$, put $u_{i+1} := v$
 (c) $S := S \cup \{u_{i+1}\}, \bar{S} := \bar{S}\{u_{i+1}\}$

3. Output $\ell(v)$ for all v (distance from u_0)
 and PARENT(v) for all v (predecessor in a shortest path from u_0 to v)
Complexity Suppose G has order n with m edges. Step 1 is $O(n)$. Step 2(a) examines each edge exactly once throughout the whole algorithm. Thus it takes $O(m)$ altogether. Step 2(b) requires, each time finding the smallest label in a set of $\leq n$ labels. This is $O(n)$ each time it is performed. It is performed n times. So the complexity is $O(m) + O(n^2) = O(n^2)$ since $m \leq n(n-1)/2 < n^2$.