1. Algebras and representations.

An algebra is a vector space (over \(\mathbb{C} \)) with a multiplication such that \(A \) is a ring with identity, i.e. there is a map \(A \times A \rightarrow A, \ (a, b) \mapsto ab \), which is bilinear and satisfies the associative and distributive laws. The following are examples of algebras:

1. The group algebra of a group \(G \) is the vector space \(\mathbb{C}G \) with basis \(G \) and with multiplication forced by the multiplication in \(G \) (and the bilinearity).
2. If \(M \) is a vector space (over \(\mathbb{C} \)) then the space \(\text{End}(M) \) of \(\mathbb{C} \)-linear transformations of \(M \) is an algebra under the multiplication given by composition of endomorphisms.
3. Given a basis \(B = \{b_1, \ldots, b_d\} \) of the vector space \(M \) the algebra \(\text{End}(M) \) can be identified with the algebra \(M_d(\mathbb{C}) \) of \(d \times d \) matrices \(T = (T_{ij})_{1 \leq i, j \leq d} \) with entries in \(\mathbb{C} \) via

\[
Tb_i = \sum_{j=1}^{d} b_j T_{ji}, \quad \text{for } t \in \text{End}(M).
\]

Let \(A \) be an algebra. An ideal in \(A \) is a subspace \(I \subset A \) such that \(ar \in I \) and \(ra \in I \), for all \(a \in A \) and \(r \in I \). A minimal ideal of \(A \) is a nonzero ideal \(I \) which cannot be written as a direct sum \(I = I_1 \oplus I_2 \) of nonzero ideals \(I_1 \) and \(I_2 \) of \(A \). An idempotent is a nonzero element \(p \in A \) such that \(p^2 = p \). Two idempotents \(p_1, p_2 \in A \) are orthogonal if \(p_1 p_2 = p_2 p_1 = 0 \). A minimal idempotent is an idempotent \(p \) that cannot be written as a sum \(p = p_1 + p_2 \) of orthogonal idempotents \(p_1, p_2 \in A \). The center of \(A \) is

\[
Z(A) = \{z \in A \mid az = za \text{ for all } a \in A\}.
\]

A central idempotent is an idempotent in \(Z(A) \) and a minimal central idempotent is a central idempotent \(z \) that cannot be written as a sum \(z = z_1 + z_2 \) of orthogonal central idempotents \(z_1 \) and \(z_2 \).

A trace on \(A \) is a linear map \(\tilde{t}: A \rightarrow \mathbb{C} \) such that

\[
\tilde{t}(a_1 a_2) = \tilde{t}(a_2 a_1), \quad \text{for all } a_1, a_2 \in A.
\]
A character of A is a trace on A. A trace \bar{t} on A is nondegenerate if for each $b \in A$ there is an $a \in A$ such that $\bar{t}(ba) \neq 0$. The radical of a trace \bar{t} is

$$\text{rad } t = \{ b \in A \mid \bar{t}(ba) = 0 \text{ for all } a \in A \}. \quad (1.1)$$

Every trace \bar{t} on A determines a symmetric bilinear form $\langle \cdot , \cdot \rangle : A \times A \to \mathbb{C}$ given by

$$\langle a_1, a_2 \rangle = \bar{t}(a_1a_2), \quad \text{for all } a_1, a_2 \in A. \quad (1.2)$$

The form $\langle \cdot , \cdot \rangle$ is nondegenerate if and only if the trace \bar{t} is nondegenerate and the radical

$$\text{rad } \langle \cdot , \cdot \rangle = \{ b \in A \mid \langle a, b \rangle = 0 \text{ for all } a \in A \}$$

of the form $\langle \cdot , \cdot \rangle$ is the same as $\text{rad } \bar{t}$.

Lemma 1.3. Let \bar{t} be a trace on A and let $\langle \cdot , \cdot \rangle$ be the bilinear form on A defined by the trace \bar{t}, as in ???. Let B be a basis of A. Let $G = (\langle b, b' \rangle)_{b, b' \in B}$ be the matrix of the form $\langle \cdot , \cdot \rangle$ with respect to B. The following are equivalent:

1. The trace \bar{t} is nondegenerate.
2. $\det G \neq 0$.
3. The dual basis B^* to the basis B with respect to the form $\langle \cdot , \cdot \rangle$ exists.

Proof. (2) \Leftrightarrow (1): The trace \bar{t} is degenerate if there is an element $a \in A$, $a \neq 0$, such that $\bar{t}(ac) = 0$ for all $c \in B$. If $a_b \in \mathbb{C}$ are such that

$$a = \sum_{b \in B} a_b b, \quad \text{then} \quad 0 = \langle a, c \rangle = \sum_{b \in B} a_b \langle b, c \rangle$$

for all $c \in B$. So a exists if and only if the columns of G are linearly dependent, i.e. if an only if G is not invertible.

(3) \Leftrightarrow (2): Let $B^* = \{ b^* \}$ be the dual basis to $\{ b \}$ with respect to $\langle \cdot , \cdot \rangle$ and let P be the change of basis matrix from B to B^*. Then

$$d^* = \sum_{b \in B} P_{db} b, \quad \text{and} \quad \delta_{bc} = \langle b, d^* \rangle = \sum_{d \in B} P_{dc} \langle b, c \rangle = (GP^t)_{b, c}.$$

So P^t, the transpose of P, is the inverse of the matrix G. So the dual basis to B exists if and only if G is invertible, i.e. if and only if $\det G \neq 0$. \blacksquare

Proposition 1.4. Let A be an algebra and let \bar{t} be a nondegenerate trace on A. Define a symmetric bilinear form $\langle \cdot , \cdot \rangle : A \times A \to \mathbb{C}$ on A by $\langle a_1, a_2 \rangle = \bar{t}(a_1a_2)$, for all $a_1, a_2 \in A$. Let B be a basis of A and let B^* be the dual basis to B with respect to $\langle \cdot , \cdot \rangle$. Let $a \in A$ and define

$$[a] = \sum_{b \in B} bab^*.$$

Then $[a]$ is an element of the center $Z(A)$ of A and $[a]$ does not depend on the choice of the basis B.

Proof. Let $c \in A$. Then

$$c[a] = \sum_{b \in B} \sum_{d \in B} \langle cb, d^* \rangle dab^* = \sum_{d \in B} da \sum_{b \in B} \langle d^* c, b \rangle b^* = \sum_{d \in B} d\!\cdot\! a^* c = [a]c,$$

since $\langle cb, d^* \rangle = \tilde{t}(cbd^*) = \tilde{t}(d^* cb) = \langle d^* c, b \rangle$. So $[a] \in Z(A)$.

Let D be another basis of A and let D^* be the dual basis to D with respect to \langle , \rangle. Let $P = (P_{db})$ be the transition matrix from D to B and let P^{-1} be the inverse of P. Then

$$d = \sum_{b \in B} P_{db} b \quad \text{and} \quad d^* = \sum_{b \in B} (P^{-1})_{bd} b^*,$$

since

$$\langle d, d^* \rangle = \left\langle \sum_{b \in B} P_{db} b, \sum_{b \in B} (P^{-1})_{bd} b^* \right\rangle = \sum_{b, b \in B} P_{db} (P^{-1})_{bd} \delta_{bb} = \delta_{dd}.$$

So

$$\sum_{d \in D} d a d^* = \sum_{d \in D} \sum_{b \in B} P_{db} a b \sum_{b} (P^{-1})_{bd} b^* = \sum_{b, b \in B} bab^* \delta_{bb} = \sum_{b} bab^*.$$

So $[a]$ does not depend on the choice of the basis B.

Representations.

An A-module is a vector space M (over \mathbb{C}) with an A-action, i.e. a map $A \times M \to M$, $(a, m) \mapsto am$, which is bilinear and such that

$$1_A m = m \quad \text{and} \quad a_1 (a_2 m) = (a_1 a_2) m,$$

for all $a_1, a_2 \in A$ and $m \in M$ (1_A denotes the identity in the algebra A). A representation of A is an A-module. A representation of a group G is a representation of the group algebra $\mathbb{C}G$. The character of an A-module M is the map $\chi^M : A \to \mathbb{C}$ given by

$$\chi^M(a) = \text{Tr}(M(a)), \quad \text{for } a \in A,$$

where $M(a)$ is the linear transformation of M determined by the action of A and $\text{Tr}(M(a))$ is the trace of $M(a)$. An irreducible character of A is the character of an irreducible representation of A.

An A-module M gives rise to a map

$$A \to \text{End}(M), \quad a \mapsto M(a) \quad (1.5)$$

where $M(a)$ is the linear transformation of M determined by the action of a on M. This map is linear and satisfies

$$M(1_A) = \text{Id}_M,$$

$$M(a_1 a_2) = M(a_1) M(a_2),$$

for all $a_1, a_2 \in A$, i.e. $A \to \text{End}(M)$ is a homomorphism of algebras. (Given a basis $B = \{b_1, \ldots, b_d\}$ of M the map $A \to \text{End}(M)$ can be identified with a map $M : A \to M_d(\mathbb{C})$.) Conversely, an algebra homomorphism as in (1.4) and (1.5) determines an A-action on M by

$$am = M(a)m, \quad \text{for all } a \in A \text{ and } m \in M.$$
Thus, the map $M: A \to \text{End}(M)$ and the A-module M are equivalent data. Historically, the map $M: A \to \text{End}(M)$ was the representation and M was the A-module, but now the terms representation and A-module are used interchangeably. This is the reason for the use of the letter M, both for the A-module and the corresponding algebra homomorphism $M: A \to \text{End}(M)$.

A submodule of an A-module M is a subspace $N \subseteq M$ such that $an \in N$, for all $a \in A$ and $n \in N$. An A-module M is simple or irreducible if it has no submodules except 0 and itself. The direct sum of two A-modules M_1 and M_2 is the vector space $M = M_1 \oplus M_2$ with A-action given by

\[a(m_1, m_2) = (am_1, am_2), \quad \text{for all } a \in A, m_1 \in M_1 \text{ and } m_2 \in M_2. \]

An A-module M is semisimple or completely decomposable if M can be written as a direct sum of simple submodules. An A-module M is indecomposable if M cannot be written as a direct sum $M = M_1 \oplus M_2$ of nonzero submodules $M_1 \subseteq M$ and $M_2 \subseteq M$.

Here we need a reference to the reader to look at the examples in Chapter 2 etc.

Proposition 1.7. Let A and B be algebras and let A^λ, $\lambda \in \hat{A}$, and B^μ, $\mu \in \hat{B}$, be the irreducible representations of A and B, respectively. The irreducible representations of $A \oplus B$ are A^λ, $\lambda \in \hat{A}$, with $A \oplus B$ action given by

\[(a, b)m = am, \quad \text{for } a \in A, b \in B, m \in A^\lambda, \]

and B^μ, $\mu \in \hat{B}$, with $A \oplus B$ action given by

\[(a, b)n = bn, \quad \text{for } a \in A, b \in B, \text{ and } n \in B^\mu. \]

Proof. The elements $(1, 0)$ and $(0, 1)$ in $A \oplus B$ are central idempotents of $A \oplus B$ such that $(1, 0)(0, 1) = (0, 0)$. If P is an $A \oplus B$-module then

\[P = (1, 0)P \oplus (0, 1)P, \]
and this is a decomposition as \(A \oplus B \)-modules. Since
\[
(a, b)(1, 0)p = (a, 0)(1, 0)p, \quad \text{and} \quad (a, b)(0, 1)p = (0, b)(0, 1)p,
\]
for all \(a \in A, b \in B, \) and \(p \in P, \) the structure of \((1, 0)P\) is determined completely by the \(A\)-action and the structure of \((0, 1)P\) is determined by the action of \(B. \) If \(P \) is a simple module then \(P = (1, 0)P \) or \(P = (0, 1)P. \) In the first case \(P \cong A^\lambda \) for some \(\lambda \in \hat{A} \) and in the second \(P \cong B^\mu \) for some \(\mu \in \hat{B}. \)

Similar arguments with the elements \((1, 0)\) and \((0, 1)\) in \(A \oplus B \) yield the following.

1. If \(A \) and \(B \) are algebras then the ideals of \(A \oplus B \) are all of the form \(I \oplus J \) where \(I \) is an ideal of \(A \) and \(J \) is an ideal of \(B. \)
2. If \(A \) and \(B \) are algebras then \(Z(A \oplus B) = Z(A) \oplus Z(B). \)
3. If \(A \) and \(B \) are algebras and \(\tilde{t} \) is a trace on \(A \oplus B \) then \(\tilde{t} \) is given by
\[
\tilde{t}(a, b) = \tilde{t}_A(a) + \tilde{t}_B(b),
\]
where \(\tilde{t}_A \) is the trace on \(A \) given by \(\tilde{t}_A(a) = \tilde{t}(a, 0) \) and \(\tilde{t}_B \) is the trace on \(B \) given by \(\tilde{t}_B(b) = \tilde{t}(0, b). \)

Tensor products

Let \(M \) and \(N \) be vector spaces and let
\[
B_m = \{m_i\} \quad \text{and} \quad B_n = \{n_j\}
\]
be bases of \(M \) and \(N, \) respectively. The tensor product \(M \otimes N \) is the vector space with basis
\[
B_{M \otimes N} = \{m_i \otimes n_j \mid m_i \in B_M, n_j \in B_N\}.
\]
If \(m = \sum_i c_i m_i, \) and \(n = \sum_j d_j n_j, \) then write
\[
m \otimes n = \left(\sum_i c_i m_i \right) \otimes \left(\sum_j d_j n_j \right) = \sum_{i,j} c_i d_j (m_i \otimes n_j).
\]

If \(A \) and \(Z \) are algebras the **tensor product** is the vector space \(A \otimes Z \) with multiplication determined by
\[
(a_1 \otimes z_1)(a_2 \otimes z_2) = a_1 a_2 \otimes z_1 z_2, \quad \text{for all} \ a_1, a_2 \in A, \ z_1, z_2 \in Z.
\]
If \(M \) and \(N \) are vector spaces then
\[
\text{End}(M \otimes N) = \text{End}(M) \otimes \text{End}(N) \quad \text{as algebras.}
\]
This equality can be expressed in terms of matrices by choosing bases \(\{m_1, \ldots, m_r\} \) and \(\{n_1, \ldots, n_s\} \) of \(M \) and \(N, \) respectively. The \(\text{End}(M) \) is identified with \(M_r(\mathbb{C}) \) and \(\text{End}(N) \) is identified with \(M_s(\mathbb{C}) \) by
\[
E_{ij}m_j = m_i \quad \text{and} \quad E_{kl}n_k = n_k, \quad \text{for} \ 1 \leq i, j \leq r \ \text{and} \ 1 \leq k, \ell \leq s.
\]
Then
\[(E_{ij} \otimes E_{k\ell})(m_j \otimes n_\ell) = E_{ij}m_j \otimes E_{k\ell}n_\ell = m_i \otimes n_k.\]

Use the (ordered) basis
\[\{m_1 \otimes n_1, \ldots, m_1 \otimes n_s, m_2 \otimes n_1, \ldots, m_2 \otimes n_s, \ldots, m_r \otimes n_1, \ldots, m_r \otimes n_s\}\]
of \(M \otimes N\) to identify \(\text{End}(M \otimes N)\) with \(M_{rs}(\mathbb{C})\). Then, if \(a = (a_{ij}) \in M_r(\mathbb{C})\) and \(b = (b_{k\ell}) \in M_s(\mathbb{C})\) then \(a \otimes b\) is the \(rs \times rs\) matrix
\[
a \otimes b = \begin{pmatrix}
a_{11}b & a_{12}b & \cdots & a_{1r}b \\
a_{21}b & a_{22}b & \cdots & a_{2r}b \\
\vdots & \ddots & \ddots & \vdots \\
a_{r1}b & a_{r2}b & \cdots & a_{rr}b
\end{pmatrix}
\]

Theorem 1.8. Let \(A\) and \(B\) be algebras. Let \(A^\lambda, \lambda \in \hat{A}\), be the simple \(A\)-modules and let \(B^\mu, \mu \in \hat{B}\), be the simple \(B\)-modules. The simple \(A \otimes B\)-modules are
\[A^\lambda \otimes B^\mu, \quad \lambda \in \hat{A}, \mu \in \hat{B}, \quad \text{where} \quad (a \otimes b)(m \otimes n) = am \otimes bn,
\]
for \(a \in A, b \in B, m \in A^\lambda, n \in B^\mu\).

Proof. There are two things to show:

1. \(A^\lambda \otimes B^\mu\) is a simple \(A \otimes B\)-module,
2. If \(P\) is a simple \(A \otimes B\)-module then \(P \cong A^\lambda \otimes B^\mu\) for some \(\lambda \in \hat{A}\) and \(\mu \in \hat{B}\).

(1) By Burnside’s theorem \(\text{End}(A^\lambda) = A^\lambda(A)\) and \(\text{End}(B^\mu) = B^\mu(B)\) and therefore
\[\text{End}(A^\lambda \otimes B^\mu) = \text{End}(A^\lambda) \otimes \text{End}(B^\mu) = A^\lambda(A) \otimes B^\mu(B) = (A^\lambda \otimes B^\mu)(A \otimes B).\]

So \(A^\lambda \otimes B^\mu\) has no submodules. So \(A^\lambda \otimes B^\mu\) is simple.

(2) Let \(P\) be a simple \((A \otimes B)\)-module. Let \(A^\lambda\) be a simple \(A\)-submodule of \(P\) and let \(B^\mu\) be a simple \(B\)-submodule of \(\text{Hom}_A(A^\lambda, P)\). We claim that \(A^\lambda \otimes B^\mu \cong P\).

Consider the \((A \otimes B)\)-module homomorphism
\[
\Phi: A^\lambda \otimes B^\mu \rightarrow A^\lambda \otimes \text{Hom}_A(A^\lambda, P) \rightarrow P
\]
\[
m \otimes \phi \mapsto \phi(m).
\]
This map is nonzero since the injection \(\phi: A^\lambda \rightarrow P\) is a nonzero element of \(\text{Hom}_A(A^\lambda, P)\). Since \(A^\lambda \otimes B^\mu\) is simple ker \(\Phi = 0\) and since \(P\) is simple \(\text{im}\Phi = P\). So \(A^\lambda \otimes B^\mu \cong P\).

2. The algebra \(M_d(\mathbb{C})\).

Let \(A = M_d(\mathbb{C})\) be the algebra of \(d \times d\) matrices with entries from \(\mathbb{C}\). Set
\[E_{ij} = \text{the matrix with 1 in the } (i, j) \text{ entry and all other entries 0.}\]

Then \(\{E_{ij} \mid 1 \leq i, j \leq d\}\) is a basis of \(A\) and
\[E_{ij}E_{kl} = \delta_{jk}E_{il}, \quad 1 \leq i, j, k, l \leq d,
\]
describes the multiplication in \(A \).

Theorem 2.1. Let \(M_d(\mathbb{C}) \) be the algebra of \(d \times d \) matrices with entries from \(\mathbb{C} \).

(a) Up to isomorphism, there is only one irreducible representation \(M \) of \(M_d(\mathbb{C}) \).

(b) \(\dim(M) = d \).

(c) The character \(\chi^M : A \to \mathbb{C} \) of \(M \) is given by

\[
\chi^M(a) = \text{Tr}(a), \quad \text{for all } a \in A,
\]

where \(\text{Tr}(a) \) is the trace of the matrix \(a \).

(d) The irreducible representation \(M \) is the vector space

\[
M = \{ (c_1, \ldots, c_d)^t \mid c_i \in \mathbb{C} \}
\]

of column vectors of length \(d \) with \(A \)-action given by left multiplication, or, equivalently, \(M \) is given by the map

\[
M : A \to M_d(\mathbb{C}), \quad a \mapsto (a).
\]

Proof. There are two things to show:

1. \(M \), as defined in (d), is a simple \(A \)-module, and
2. If \(C \) is a simple \(A \)-module then \(C \cong M \).

(1) Let \(\epsilon_i \) be the column vector which has 1 in the \(i \)th entry and 0 in all other entries. The set \(\{ \epsilon_1, \ldots, \epsilon_d \} \) is a basis of \(M \). Let \(N \subseteq M \) be a nonzero submodule of \(M \) and let \(n = \sum_{i=1}^{d} n_i \epsilon_i \) be a nonzero vector in \(N \). Then \(n_j \neq 0 \) for some \(j \) and so

\[
\epsilon_k = \frac{1}{n_j} E_{kj} n \in N, \quad \text{for all } 1 \leq k \leq d.
\]

Thus \(N = M \), since \(N \) contains a basis of \(M \).

(2) Let \(C \) be a simple \(A \)-module and let \(c \) be a nonzero vector in \(C \). Since \(c = \text{Id} \cdot c = \sum_{i=1}^{d} E_{ii} c \neq 0 \), \(E_{jj} c \neq 0 \) for some \(j \). Define an \(A \)-module homomorphism by

\[
\phi : M \to C, \quad \epsilon_k \mapsto E_{kj} c.
\]

Since \(\phi(\epsilon_j) \neq 0, \ker \phi \neq 0 \). Since \(M \) is simple, \(\ker \phi = M \) and so \(\phi \) is injective. Since \(\text{im} \phi \neq 0 \) and \(C \) is simple, \(\text{im} \phi = C \) and so \(\phi \) is surjective. So \(\phi \) is an isomorphism and \(C \cong M \). □

Proposition 2.2. Let \(M_d(\mathbb{C}) \) be the algebra of \(d \times d \) matrices with entries from \(\mathbb{C} \).

1. The only ideals of \(M_d(\mathbb{C}) \) are 0 and \(M_d(\mathbb{C}) \).
2. \(Z(M_d(\mathbb{C})) = \mathbb{C} \cdot \text{Id} \) and \(\text{Id} \) is the only central idempotent in \(M_d(\mathbb{C}) \).
3. Up to constant multiples, the trace \(\text{Tr} : M_d(\mathbb{C}) \to \mathbb{C} \) given by

\[
\text{Tr}(a) = \sum_{i=1}^{d} a_{ii}, \quad \text{for all } a = (a_{ij}) \in M_d(\mathbb{C}),
\]
is the unique trace on $M_d(\mathbb{C})$.

Proof. Let E_{ij} denote the matrix in $M_d(\mathbb{C})$ which has a 1 in the (i, j) entry and 0 everywhere else.

1. Let I be a nonzero ideal of $M_d(\mathbb{C})$ and let $r = (r_{ij}) \in I$, $r \neq 0$. Let r_{ij} be a nonzero entry of r. Then

$$\frac{1}{r_{ij}} E_{ki} r E_{jl} = E_{kl} \in I, \quad \text{for all } 1 \leq k, l \leq d.$$

So I contains a basis of $M_d(\mathbb{C})$. So $I = M_d(\mathbb{C})$.

2. Clearly $\mathbb{C}I_d \subseteq Z(M_d(\mathbb{C})$. Let $z = (z_{ij}) \in Z(M_d(\mathbb{C}))$. If $i \neq j$ then

$$z_{ij} E_{ij} = E_{ii} z_{jj} = \delta_{ij} \chi(E_{11}),$$

so $z_{ij} = 0$ if $i \neq j$. Further

$$z_{ii} E_{ii} = E_{ii} z_{ii} = E_{ii} z_{ii} = z_{ii} E_{ii},$$

so $z_{ii} = z_{11}$ for all $1 \leq i \leq d$. So $z = z_{11} I_d$. So $Z(M_d(\mathbb{C})) \subseteq \mathbb{C}I_d$. So $Z(M_d(\mathbb{C})) = \mathbb{C}I_d$.

3. Let $\chi: M_d(\mathbb{C}) \to \mathbb{C}$ be a trace on $M_d(\mathbb{C})$. If $a = (a_{ij}) \in M_d(\mathbb{C})$ then

$$\chi(E_{ij} a E_{jj}) = a_{ij} \chi(E_{ij}) = a_{ij} \chi(E_{1j} E_{j1}) = a_{ij} \delta_{ij} \chi(E_{11}).$$

Thus

$$\chi(a) = \chi \left(\left(\sum_{i=1}^{d} E_{ii} \right) a \left(\sum_{j=1}^{d} E_{jj} \right) \right) = \sum_{i,j=1}^{d} a_{ij} \delta_{ij} \chi(E_{11}) = \chi(E_{11}) \text{Tr}(a).$$

So χ is a multiple of the trace Tr.

3. **The algebra $\bigoplus_{\lambda \in \hat{\lambda}} M_{d_{\lambda}}(\mathbb{C})$.**

Let $\hat{\lambda}$ be a finite set and let d_{λ} be positive integers indexed by the elements of $\hat{\lambda}$. Let

$$A = \bigoplus_{\lambda \in \hat{\lambda}} M_{d_{\lambda}}(\mathbb{C}),$$

be the algebra of block diagonal matrices with blocks $M_{d_{\lambda}}(\mathbb{C})$. Let E_{ij}^λ be the matrix which has a 1 in the (i, j) entry of the λth block and 0 everywhere else. Then $\{E_{ij}^\lambda \mid \lambda \in \hat{\lambda}, 1 \leq i, j \leq d_{\lambda}\}$ is a basis of A and the relations

$$E_{ij}^\lambda E_{kl}^\mu = \delta_{\lambda\mu} \delta_{ij} E_{kl}^\lambda$$

determine the multiplication in A.

The following theorems are consequences of Theorems ?? and Proposition ???.

Theorem 3.1. Let $\hat{\lambda}$ be a finite set and let d_{λ} be positive integers indexed by the elements of $\hat{\lambda}$. Let

$$A = \bigoplus_{\lambda \in \hat{\lambda}} M_{d_{\lambda}}(\mathbb{C}),$$

be the algebra of block diagonal matrices with blocks $M_{d_{\lambda}}(\mathbb{C})$.

(1) The irreducible representations A^λ of A are indexed by the elements of \hat{A}.

(2) $\dim(A^\lambda) = d_\lambda$.

(3) The character $\chi^\lambda: A \to \mathbb{C}$ of A^λ is given by
$$\chi^\lambda(a) = \text{Tr}(A^\lambda(a)), \quad a \in A,$$
where $A^\lambda(a)$ is the λth block of the matrix a.

(4) The irreducible representation A^λ is given by the map
$$A^\lambda: A \longrightarrow M_{d_\lambda}(\mathbb{C}),$$
where $A^\lambda(a)$ is the λth block of the matrix A, or, equivalently, by the vector space A^λ of column vectors of length d_λ and A-action given by
$$am = A^\lambda(a)m, \quad \text{for } a \in A \text{ and } m \in A^\lambda.$$

Theorem 3.2. Let \hat{A} be a finite set and let d_λ be positive integers indexed by the elements of \hat{A}. Let
$$A = \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C}),$$
be the algebra of block diagonal matrices with blocks $M_{d_\lambda}(\mathbb{C})$. If $a \in A$ let $A^\lambda(a)$ denote the λth block of the matrix a. Let E_{ij}^λ be the matrix which has a 1 in the (i,j) entry of the λth block and 0 everywhere else.

(1) The minimal ideals of A are given by
$$I^\lambda = \{a \in A \mid A^\mu(a) = 0 \text{ for all } \mu \neq \lambda\}, \quad \lambda \in \hat{A},$$
and every ideal of A is of the form $I = \bigoplus_{\lambda \in S} I^\lambda$, for some subset $S \subseteq \hat{A}$.

(2) The minimal central idempotents of A are
$$z_\lambda = \sum_{i=1}^{d_\lambda} E_{ii}^\lambda, \quad \lambda \in \hat{A},$$
and $\{z_\lambda \mid \lambda \in \hat{A}\}$ is a basis of the center $Z(A)$ of A.

(3) The irreducible characters χ^λ, $\lambda \in \hat{A}$, of A are given by
$$\chi^\lambda(a) = \text{Tr}(A^\lambda(a)), \quad a \in A,$$
and every trace $\bar{t}: A \to \mathbb{C}$ on A can be written uniquely in the form
$$\bar{t} = \sum_{\lambda \in \hat{A}} t_\lambda \chi^\lambda, \quad t_\lambda \in \mathbb{C}.$$
Let A be an algebra which is isomorphic to a direct sum of matrix algebras and fix an isomorphism
\[\phi: A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}). \]
(3.3)

The elements
\[e_{ij}^\lambda = \phi^{-1}(E_{ij})^\lambda, \quad \lambda \in \hat{A}, \quad 1 \leq i, j \leq d_{\lambda}, \]
are matrix units in A, i.e. \{\(e_{ij}^\lambda | \lambda \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\)\} is a basis of A and
\[e_{ij}^\lambda e_{kl}^\mu = \delta_{\lambda\mu} \delta_{ij} e_{il}^\lambda, \]
for all $\lambda, \mu \in \hat{A}$, $1 \leq i, j \leq d_{\lambda}$, $1 \leq k, l \leq d_{\mu}$. If $a \in A$, let $A^\lambda(a)_{ij} \in \mathbb{C}$ be defined by the expansion
\[a = \sum_{\lambda \in \hat{A}} \sum_{i,j=1}^{d_{\lambda}} A^\lambda(a)_{ij} e_{ij}^\lambda. \]

It follows from Theorem ??? that the maps
\[A^\lambda: A \to M_{d_{\lambda}}(\mathbb{C}) \quad \text{and} \quad \chi^\lambda: A \to \mathbb{C} \quad \text{are the irreducible representations and the irreducible characters of} \ A, \text{respectively. The homomorphisms} \ A^\lambda \text{depend on the choice of} \ \phi \text{but the irreducible characters} \ \chi^\lambda \text{do not. The weights of a trace} \ \tilde{t} \text{on} \ A \text{are the constants} \ t_{\lambda}, \ \lambda \in \hat{A}, \text{defined by the expansion in} \ ??? \text{. The trace} \ \tilde{t} \text{is nondegenerate if and only if the} \ t_{\lambda} \text{are all nonzero.}

Theorem 3.4. Let A be an algebra which is isomorphic to a direct sum of matrix algebras, indexed by $\lambda \in \hat{A}$. Let \tilde{t} be a nondegenerate trace on A and let $\langle \cdot, \cdot \rangle$ be the corresponding bilinear form. Let $B = \{b\}$ be a basis of A and let $B^* = \{b^*\}$ be the dual basis to B with respect to $\langle \cdot, \cdot \rangle$. Let $\chi^\lambda, \lambda \in \hat{A}$, be the irreducible characters of A, t_{λ} be the weights of \tilde{t}, d_{λ} the dimensions of the irreducible representations, $\{e_{ij}^\lambda\}$ a set of matrix units of A, and A^λ the corresponding irreducible representations of A.

(a) (Fourier inversion formula)
\[e_{ij}^\lambda = \sum_{b \in B} t_{\lambda} A_{ji}^\lambda (b^*) b. \]

(b) The minimal central idempotent z_{λ} in A indexed by $\lambda \in \hat{A}$ is given by
\[z_{\lambda} = \sum_{b \in B} t_{\lambda} \chi^\lambda(b^*) b. \]

(c) (Orthogonality of characters) For all $\lambda, \mu \in \hat{A}$,
\[\sum_{b \in B} \chi^\lambda(b^*) \chi^\mu(b) = \delta_{\lambda\mu} \frac{d_{\lambda}}{t_{\lambda}}. \]
Proof. (a) Since \(\vec{t} \) is nondegenerate, the equation
\[
\vec{t}(e_{\lambda ij}) = \sum_{\mu \in \hat{A}} t_{\mu} \chi_{\mu}(e_{\lambda ij}) = t_\lambda \delta_{ij}
\]
implies that
\[
\left\{ e_{\lambda ij} \right\} \text{ is the dual basis to } \left\{ e_{\lambda ji} \right\}
\]
with respect to \(\langle , \rangle \).

Thus, by (???),
\[
A^\lambda_{ij}(a) = \frac{1}{t_\lambda} \langle a, e_{\lambda ji} \rangle, \quad \text{and so} \quad e_{\lambda ij} = \sum_{b \in B} \langle e_{\lambda ij}, b^* \rangle b = \sum_{b \in B} t_\lambda A^\lambda_{ji}(b^*)b.
\]
(b) By part (a),
\[
z_\lambda = \sum_{i=1}^{d_\lambda} e_{ii}^\lambda = \sum_{b \in B} t_\lambda \text{Tr}(A^\lambda(b^*))b.
\]
(c) By part (b),
\[
d_\lambda \delta_{\lambda \mu} = \chi^\mu(z_\lambda) = \sum_{b \in B} t_\lambda \chi^\lambda(b) \chi^\mu(b).
\]

Example 1. Let \(A = \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C}) \).

(1) As a left \(A \)-module under the action of \(A \) by left multiplication
\[
A \cong \bigoplus_{\lambda \in \hat{A}} (A^\lambda)^{\oplus d_\lambda},
\]
where \(A^\lambda \) is the irreducible \(A \)-module of column vectors of length \(d_\lambda \).

(2) As an \((A,A)\) bimodule under the action of \(A \) by left and right multiplication
\[
A \cong \bigoplus_{\lambda \in \hat{A}} A^\lambda \otimes \overline{A}^\lambda,
\]
where \(A^\lambda \) is the left \(A \)-module of column vectors of length \(d_\lambda \) and \(\overline{A}^\lambda \) is the right \(A \)-module of row vectors of length \(d_\lambda \).

(3) Let \(a, b \in A \). If \(a \) acts on \(A \) by left multiplication and \(b \) acts on \(A \) by right multiplication then
\[
\text{Tr}(a \otimes b) = \sum_{\lambda \in \hat{A}} \chi^\lambda(a) \chi^\lambda(b),
\]
where \(\chi^\lambda, \lambda \in \hat{A} \), are the irreducible characters of \(A \).

Example 2. Let \(G \) be a finite group and let \(\mathbb{C}G \) be the group algebra of \(G \). The trace of the regular representation of \(\mathbb{C}G \) is given by
\[
\text{tr}(g) = \sum_{h \in G} gh|_h = \begin{cases} |G|, & \text{if } g = 1, \\ 0, & \text{otherwise}. \end{cases}
\]
So, (provided \(|G| \neq 0 \) in \(\mathbb{C} \)) the basis
\[
\left\{ \frac{g^{-1}}{|G|} \right\}_{g \in G}
\]
is the dual basis to \(G \).
with respect to the form $\langle \cdot, \cdot \rangle$ defined by tr. Since tr is nondegenerate

$$\mathbb{C}G \cong \bigoplus_{\lambda \in \hat{G}} M_{d_\lambda}(\mathbb{C}),$$

for some set \hat{G} and positive integers d_λ. Then

$$\text{tr} = \sum_{\lambda \in \hat{G}} d_\lambda \chi^\lambda,$$

where χ^λ, $\lambda \in \hat{G}$, are the irreducible characters of G and, by (??),

$$z_\lambda = \frac{1}{|G|} \sum_{g \in G} d_\lambda \chi^\lambda(g^{-1})g, \quad \lambda \in \hat{G},$$

are the minimal central idempotents in $\mathbb{C}G$. The orthogonality relation for characters of G (??) is

$$\frac{1}{|G|} \sum_{g \in G} \chi^\lambda(g^{-1})\chi^\mu(g) = \delta_{\lambda\mu}, \quad \text{for } \lambda, \mu \in \hat{G}.$$

If $G^\lambda: \mathbb{C}^G \to M_{d_\lambda}(\mathbb{C})$ are the irreducible representations of G then

$$e_{ij}^\lambda = \frac{1}{|G|} \sum_{g \in G} d_\lambda G^\lambda(g^{-1})_{ji}g, \quad \lambda \in \hat{G}, 1 \leq i, j \leq d_\lambda,$$

are a set of matrix units in $\mathbb{C}G$, i.e.

$$e_{ij}^\lambda e_{k\ell}^\mu = \delta_{\lambda\mu} \delta_{kj} e_{\ell i}^\lambda$$

and $\{e_{ij}^\lambda \mid \lambda \in \hat{G}, 1 \leq i, j \leq d_\lambda\}$ is a basis of $\mathbb{C}G$.

Let $g, h \in G$ and let g act on $\mathbb{C}G$ by left multiplication and let h act on $\mathbb{C}G$ by right multiplication. Then

$$\text{Tr}(g \otimes h) = \sum_{k \in G} gkh|_k = \sum_{k \in G} khk^{-1}|_{g^{-1}} = \begin{cases} \text{Card}(C_h), & \text{if } h \text{ is conjugate to } g^{-1}, \\ 0, & \text{otherwise}, \end{cases}$$

where C_h is the conjugacy class of h. Thus, by (??),

$$\sum_{\lambda \in \hat{G}} \chi^\lambda(g)\chi^\lambda(h) = \begin{cases} \text{Card}(C_h), & \text{if } h \text{ is conjugate to } g^{-1}, \\ 0, & \text{otherwise}, \end{cases}$$

which is the second orthogonality relation for characters of G.

The elements

$$e_g = \sum_{x \in C_g} x$$

are a basis of the center of $\mathbb{C}G$. Since $\{z_\lambda \mid \lambda \in \hat{G}\}$ is also a basis of $Z(\mathbb{C}G)$ we have that

$$\text{Card}(\hat{G}) = \# \text{ of conjugacy classes of } G.$$
though there is no (known) natural bijection between the irreducible representations of G and the conjugacy classes of G.

It follows from ??? that
\[|G| = \sum_{\lambda \in \hat{G}} d_{\lambda}^2. \]

Every trace \bar{t} on $\mathbb{C}G$ has a unique decomposition
\[\bar{t} = \sum_{\lambda \in \hat{G}} t_{\lambda} \chi_{\lambda}, \quad t_{\lambda} \in \mathbb{C}. \]

So, since every G-module is semisimple, its decomposition is determined by its character. So

"Two G-modules are isomorphic if and only if they have the same character."

and
\[\dim(Z(\mathbb{C}G)) = (\# \text{ of irreducible representations of } G) = (\# \text{ of conjugacy classes of } G). \]

4. Centralizers.

Let A be an algebra and let M be an A-module. The \textit{centralizer} or \textit{commutant} of M is the algebra
\[\text{End}_A(M) = \{ T \in \text{End}(M) \mid Ta = aT \text{ for all } a \in A \}. \]

If M and N are A-modules then $\text{Hom}_A(M, N)$ is a left $\text{End}_A(M)$-module and a right $\text{End}_A(N)$-module.

Theorem 4.1. (Schur’s Lemma) Let A be an algebra.

(1) Let A^λ be a simple A-module. Then $\text{End}_A(A^\lambda) = \mathbb{C} \cdot \text{Id}_{A^\lambda}$.

(2) If A^λ and A^μ are nonisomorphic simple A-modules then $\text{Hom}_A(A^\lambda, A^\mu) = \{0\}$.

\textit{Proof}. Let $T: A^\lambda \to A^\mu$ be a nonzero A-module homomorphism. Since A^λ is simple, $\text{ker} \ T = 0$ and so T is injective. Since A^μ is simple, $\text{im} \ T = A^\mu$ and so T is surjective. So T is an isomorphism. Thus we may assume that $T: A^\lambda \to A^\lambda$.

When A^λ is finite dimensional: Since \mathbb{C} is algebraically closed T has an eigenvector and a corresponding eigenvalue $\alpha \in \mathbb{C}$. Then $T - \alpha \cdot \text{Id} \in \text{Hom}_A(A^\lambda, A^\lambda)$ and so $T - \alpha \cdot \text{Id}$ is either 0 an isomorphism. However, since $\det(T - \alpha \cdot \text{Id}) = 0$, $T - \alpha \cdot \text{Id}$ is not invertible. So $T - \alpha \cdot \text{Id} = 0$. So $T = \alpha \cdot \text{Id}$. So $\text{End}_A(A^\lambda) = \mathbb{C} \cdot \text{Id}$.

When A^λ is countable dimensional: We shall show that there exists a $\lambda \in \mathbb{C}$ such that $T - \lambda \cdot \text{Id}$ is not invertible. Suppose $T - \lambda \cdot \text{Id}$ is invertible for all $\lambda \in \mathbb{C}$. Then $p(T)$ is invertible for all polynomials $p(t) \in \mathbb{C}[t]$. So $p(T)/q(T)$ is well defined for all $p(t), q(t) \in \mathbb{C}[t]$.

Let $v \in A^\lambda$ be nonzero. Then the map
\[\mathbb{C}(t) \longrightarrow \text{End}(V) \longrightarrow V \]
\[\frac{p(t)}{q(t)} \longrightarrow \frac{p(T)}{q(T)} \longrightarrow \frac{p(T)}{q(T)} v \]
is injective. Since \(\dim \mathbb{C}(t) \) is uncountable and \(\dim V \) is countable this is a contradiction. So \(T - \lambda \cdot \text{Id} \) is invertible for some \(\lambda \in \mathbb{C} \). Then the same proof as in the finite dimensional case shows that \(T = \lambda \cdot \text{Id} \).

If \(A^\lambda \) is unitary: Let
\[
A = \frac{T + T^*}{2} \quad \text{and} \quad B = \frac{T - T^*}{2i}
\]
where \(T^* \) is defined by \(\langle Tv_1, v_2 \rangle = \langle v_1, T^*v_2 \rangle \) for all \(v_1, v_2 \in A^\lambda \). Then
\[
A = A^*, \quad B = B^*, \quad T = A + iB, \quad \text{and} \quad A, B, T \in \text{Hom}_{A^\lambda}(A^\lambda, A^\lambda).
\]
Then the spectral theorem for self adjoint operators says that \(A \) and \(B \) can be diagonalized [Rudin, Thm. 12.2],
\[
A = \sum_i \lambda_i P_i \quad \text{and} \quad B = \sum_j \mu_j Q_j, \quad \text{with} \quad P_i^2 = P_i, \quad Q_j^2 = Q_j, \quad P_i, Q_j \in \text{Hom}_{A^\lambda}(A^\lambda, A^\lambda), \quad \lambda_i, \mu_j \in \mathbb{C}.
\]
Then \(P_i A^\lambda \) is a submodule of \(A^\lambda \). So \(P_i A^\lambda = A^\lambda \). So \(A = \lambda \cdot \text{Id} \).

Lemma 4.2. Suppose that \(V \) is a unitary representation. Then
\[
\text{Hom}_{A}(V, V) = \mathbb{C} \cdot \text{Id}_V \quad \text{implies that} \quad V \text{ is irreducible.}
\]

Proof. Suppose that \(V \) is not irreducible. Then let \(W \subseteq V \) be a submodule of \(V \). Let
\[
W^\perp = \{ v \in V \mid \langle v, w \rangle = 0, \text{ for all } w \in W \}.
\]
Then \(W^\perp \) is a submodule since, if \(v \in W^\perp \) and \(w \in W \), then \(\langle av, w \rangle = \langle v, a^*w \rangle = 0 \) because \(a^*w \in W \). Now, for Hilbert spaces, we have \(V = W \oplus W^\perp \) and we can define a
\[
\begin{align*}
V & \xrightarrow{P} V \\
w & \mapsto w, \quad \text{if } w \in W, \\
w^\perp & \mapsto 0, \quad \text{if } w \in W^\perp,
\end{align*}
\]
This map is a nonidentity \(A \)-module homomorphism. So \(\text{Hom}_{A}(V, V) \neq \mathbb{C} \cdot \text{Id} \).

Theorem 4.3. Let \(A \) be an algebra. Let \(M \) be a semisimple \(A \)-module and set \(Z = \text{End}_{A}(M) \). Suppose that
\[
M \cong \bigoplus_{\lambda \in \hat{M}} (A^\lambda)^{\oplus m_{\lambda}},
\]
where \(\hat{M} \) is an index set for the irreducible \(A \)-modules \(A^\lambda \) which appear in \(M \) and the \(m_{\lambda} \) are positive integers.

(a) \(Z \cong \bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\mathbb{C}) \).

(b) As an \((A \otimes Z) \)-module
\[
M \cong \bigoplus_{\lambda \in \hat{M}} A^\lambda \otimes Z^\lambda,
\]
where the $Z^\lambda, \lambda \in \hat{M}$, are the simple Z-modules.

Proof. Index the components in the decomposition of M by dummy variables ϵ_i^λ so that we may write

$$M \cong \bigoplus_{\lambda \in \hat{M}} \bigoplus_{i=1}^{m_\lambda} A^\lambda \otimes \epsilon_i^\lambda.$$

For each $\lambda \in \hat{M}, 1 \leq i, j \leq m_\lambda$ let $\phi^\lambda_{ij}: A^\lambda \otimes \epsilon_j \to A^\lambda \otimes \epsilon_i$ be the A-module isomorphism given by

$$\phi^\lambda_{ij}(m \otimes \epsilon_j^\lambda) = m \otimes \epsilon_i^\lambda,$$

for $m \in A^\lambda$.

By Schur’s Lemma,

$$\text{End}_A(M) = \text{Hom}_A(M, M) \cong \text{Hom}_A \left(\bigoplus_{\lambda \in \hat{M}} \bigoplus_{j} A^\lambda \otimes \epsilon_j^\lambda, \bigoplus_{\mu} \bigoplus_{i} A^\mu \otimes \epsilon_i^\mu \right) \cong \bigoplus_{\lambda, \mu} \bigoplus_{i,j} \delta_{\lambda\mu} \text{Hom}_A(A^\lambda \otimes \epsilon_j^\lambda, A^\mu \otimes \epsilon_i^\mu) \cong \bigoplus_{\lambda} \bigoplus_{i,j=1}^{m_\lambda} \mathbb{C} \phi^\lambda_{ij}.$$

Thus each element $z \in \text{End}_A(M)$ can be written as

$$z = \sum_{\lambda \in \hat{M}} \sum_{i,j=1}^{m_\lambda} z^\lambda_{ij} \phi^\lambda_{ij}, \quad \text{for some } z^\lambda_{ij} \in \mathbb{C},$$

and identified with an element of $\bigoplus_{\lambda} M_{m_\lambda}(\mathbb{C})$. Since $\phi^\lambda_{ij} \phi^\mu_{kl} = \delta_{\lambda\mu} \delta_{jk} \phi^\lambda_{il}$ it follows that

$$\text{End}_A(M) \cong \bigoplus_{\lambda \in \hat{M}} M_{m_\lambda}(\mathbb{C}).$$

(b) As a vector space $Z^\mu = \text{span}\{\epsilon_i^\mu \mid 1 \leq i \leq m_\mu\}$ is isomorphic to the simple $\bigoplus_{\lambda} M_{m_\lambda}(\mathbb{C})$ module of column vectors of length m_μ. The decomposition of M as $A \otimes Z$ modules follows since

$$(a \otimes \phi^\lambda_{ij})(m \otimes \epsilon_k^\mu) = \delta_{\lambda\mu} \delta_{jk} (a \otimes \epsilon_k^\mu), \quad \text{for all } m \in A^\mu, a \in A,$$

If A is an algebra then A^{op} is the algebra A except with the opposite multiplication, i.e.

$$A^{op} = \{a^{op} \mid a \in A\} \quad \text{with} \quad a_1^{op} a_2^{op} = (a_2 a_1)^{op}, \quad \text{for all } a_1, a_2 \in A.$$

Let left regular representation of A is the vector space A with A action given by left multiplication. Here A is serving both as an algebra and as an A-module. It is often useful to distinguish the two roles of A and use the notation \bar{A} for the A-module, i.e. \bar{A} is the vector space

$$\bar{A} = \{\bar{b} \mid b \in A\} \quad \text{with } A\text{-action} \quad \bar{a} \bar{b} = \bar{ab}, \quad \text{for all } a \in A, \bar{b} \in \bar{A}.$$
Proposition 4.4. Let A be an algebra and let \tilde{A} be the regular representation of A. Then $\text{End}_A(\tilde{A}) \cong A^{\text{op}}$. More precisely,

$$\text{End}_A(\tilde{A}) = \{ \phi_b \mid b \in A \},$$

where ϕ_b is given by $\phi_b(\tilde{a}) = \tilde{ab}$, for all $\tilde{a} \in \tilde{A}$.

Proof. Let $\phi \in \text{End}_A(\tilde{A})$ and let $b \in A$ be such that $\phi(\tilde{1}) = \tilde{b}$. For all $\tilde{a} \in \tilde{A}$,

$$\phi(\tilde{a}) = \phi(a \cdot \tilde{1}) = a\phi(\tilde{1}) = a\tilde{b} = \tilde{ab},$$

and so $\phi = \phi_b$. Then $\text{End}_A(\tilde{A}) \cong A^{\text{op}}$ since

$$(\phi_{b_1} \circ \phi_{b_2})(\tilde{a}) = a\tilde{b_2}b_1 = \phi_{b_2b_1}(\tilde{a}),$$

for all $b_1, b_2 \in A$ and $\tilde{a} \in \tilde{A}$. \blacksquare

5. Characterizing algebras isomorphic to $\bigoplus_\lambda M_{d_\lambda}(\mathbb{C})$

Theorem 5.1. Suppose that A is an algebra such that the regular representation \tilde{A} of A is completely decomposable. Then A is isomorphic to a direct sum of matrix algebras, i.e.

$$A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C}),$$

for some set \hat{A} and some positive integers d_λ, indexed by the elements of \hat{A}.

Proof. If \tilde{A} is completely decomposable then, by Theorem ???, $\text{End}_A(\tilde{A})$ is isomorphic to a direct sum of matrix algebras. By Proposition ??,

$$A^{\text{op}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C}),$$

for some set \hat{A} and some positive integers d_λ, indexed by the elements of \hat{A}. The map

$$\bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C})^{\text{op}} \xrightarrow{a^t} \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C})$$

where a^t is the transpose of the matrix a, is an algebra isomorphism. So A is isomorphic to a direct sum of matrix algebras. \blacksquare

Proposition 5.2. Let $A = \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{C})$. Then the trace tr of the regular representation of A is nondegenerate.

Proof. As A-modules, the regular representation

$$\tilde{A} \cong \bigoplus_{\lambda \in \hat{A}} (A^{\lambda})^{\otimes d_\lambda},$$

where A^λ is the irreducible A-module consisting of column vectors of length d_λ. So the trace tr of the regular representation is given by

$$tr = \sum_{\lambda \in \hat{A}} d_\lambda \chi^\lambda,$$

where χ^λ are the irreducible characters of A. Since the d_λ are all nonzero the trace tr is nondegenerate.

Theorem 5.3. (Maschke’s theorem) Let A be an algebra such that the trace tr of the regular representation of A is nondegenerate. Then every representation of A is completely decomposable.

Proof. Let B be a basis of A and let B^* be the dual basis of A with respect to the form $\langle,\rangle: A \times A \to \mathbb{C}$ defined by

$$\langle a_1, a_2 \rangle = tr(a_1 a_2), \quad \text{for all } a_1, a_2 \in A.$$

The dual basis B^* exists because the trace tr is nondegenerate.

Let M be an A-module. If M is irreducible then the result is vacuously true, so we may assume that M has a proper submodule N. Let $p \in \text{End}(M)$ be a projection onto N, i.e. $pM = N$ and $p^2 = p$. Let

$$[p] = \sum_{b \in B} bp^b, \quad \text{and} \quad e = \sum_{b \in B} bb^*.$$

For all $a \in A$,

$$tr(ea) = \sum_{b \in B} tr(bb^*a) = \sum_{b \in B} \langle ab, b^* \rangle = \sum_{b \in B} ab \big|_b = tr(a),$$

So $tr((e - 1)a) = 0$, for all $a \in A$. Thus, since tr is nondegenerate, $e = 1$.

Let $m \in M$. Then $pb^*m \in N$ for all $b \in B$, and so $[p]m \in N$. So $[p]M \subseteq N$. Let $n \in N$. Then $pb^*n = b^*n$ for all $b \in B$, and so $[p]n = en = 1 \cdot n = n$. So $[p]M = N$ and $[p]^2 = [p]$, as elements of $\text{End}(M)$.

$$M = [p]M \oplus (1 - [p])M = N \oplus [1 - p]M,$$

and, by Proposition ??, $[1 - p]M$ is an A-module. So $[1 - p]M$ is an A-submodule of M which is complementary to M. By induction on the dimension of M, N and $[1 - p]M$ are completely decomposable, and therefore M is completely decomposable. $lacksquare$

Together, Theorems ??, ?? and Proposition ?? yield the following theorem.

Theorem 5.4. (Artin-Wedderburn) Let A be a finite dimensional algebra over \mathbb{C}. The following are equivalent:

1. Every representation of A is completely decomposable.
2. The trace of the regular representation of A is nondegenerate.
3. The regular representation of A is completely decomposable.

Example 1. Let A be the algebra with basis $\{1, e\}$ and multiplication given by $e^2 = 0$. Then

$$\tilde{t}: A \to \mathbb{C} \quad \text{given by} \quad \tilde{t}(a + be) = a + b$$
is a nondegenerate trace on A. The regular representation of A is given by

$$\tilde{A}(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \tilde{A}(e) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and $\mathbb{C}e$ is the only submodule of \tilde{A}. Thus, \tilde{A} is not completely decomposable. The trace tr of the regular representation of A is given by

$$\text{tr}(a + be) = 2a, \quad \text{for } a, b \in \mathbb{C}.$$

Theorem 5.5. *(Burnside’s Theorem)* Let A be an algebra and let $M : A \to \text{End}(M)$ be an irreducible representation of A. Then $M(A) = \text{End}(M)$.

Proof. Clearly, $M(A) \subseteq \text{End}(M)$ and M is both a simple $M(A)$-module and a simple $\text{End}(M)$-module. As $\text{End}(M)$-modules

$$\text{End}(M) \cong M^\oplus d,$$

and so, by restriction, this is also true as an $M(A)$-module. Thus, by Schur’s lemma,

$$\text{End}_{M(A)}(\text{End}(M)) = M_d(\mathbb{C}).$$

Let us label the summands in the decomposition by dummy variables ϵ_i,

$$\frac{\text{End}(M)}{M} = \bigoplus_{i=1}^{d} M \otimes \epsilon_i,$$

so that $E_{ii}(\text{End}(M)) = M \otimes \epsilon_i$.

Now $\overline{M(A)} \subseteq \text{End}(M)$ is an $M(A)$ submodule of $\text{End}(M)$. However,

$$E_{ii}(\text{End}(M)) \subseteq M \otimes \epsilon_i \quad \text{and} \quad \overline{M(A)} = E_{11}M(A) \oplus \cdots \oplus E_{dd}M(A) \subseteq M \otimes \epsilon_1 \oplus \cdots \oplus M \otimes \epsilon_d.$$

Since M is a simple $M(A)$ module, each $E_{ii}\overline{M(A)}$ is isomorphic to M or 0. So

$$\overline{M(A)} \cong M^\oplus k, \quad \text{for some } 1 \leq k \leq d.$$

So the regular representation of $M(A)$ is semisimple and $M(A) \cong M_k(\mathbb{C})$. Since $\text{dim}(M) = d$ and M is a simple module for $M(A)$ we have $M(A) \cong M_d(\mathbb{C})$. So $M(A) = \text{End}(M)$. \(\blacksquare\)

Remark 1. We used Schur’s lemma in a crucial way so we are assuming that \mathbb{C} is algebraically closed. In general we can say:

If M is a simple A-module then $M(A) = \text{End}_Z(M)$ where $Z = \text{End}_A(M)$.

The proof is similar to that given above and is called the Jacobson density theorem.

Example. Assume that A is a commutative algebra and let M be a simple A-module. Then $M(A)$ is commutative and $M(A) = \text{End}(M) \cong M_d(\mathbb{C})$, where $d = \text{dim}(M)$. However, $M_d(\mathbb{C})$ is commutative if and only if $d = 1$. This shows that every irreducible representation of a commutative algebra is one dimensional.

Example 2. Explain what the error is in the following proof of Burnside’s theorem: If M is an irreducible A-module then $M(A) = \text{End}(M)$.

Proof. Let $\{m_1, \ldots, m_d\}$ be a basis of M. Since M is irreducible, for any i and j there is an $a \in A$ such that $M(a)m_j = m_i$. So the matrix $E_{ji} \in M(A)$ for all $1 \leq i, j \leq n$. So $\text{End}(M) \subseteq M(A)$. So $M(A) = \text{End}(M)$. \(\blacksquare\)