Symmetric functions

\[\mathfrak{h}_d \] dual \(\mathbb{Z} \)-vector spaces, \(\langle \mathfrak{h}_d, \mathfrak{h}_d^* \rangle \rightarrow \frac{1}{2} \mathbb{Z} \)

\(W_0 \) a finite subgroup of \(S_\mathfrak{h}(\mathfrak{h}_d) \) generated by reflections. Then \(W_0 \) acts on the group algebra

\[K_{\mathfrak{h}_d}(pt) = \text{span} \{ y^{\lambda} \mid \lambda \in \mathfrak{h}_d \} \]

with \(y^{\lambda} y^{\mu} = y^{\lambda + \mu} \) by \(w y^{\lambda} = y^{w \lambda} \).

The algebra of symmetric functions is

\[K_{\mathfrak{h}_d}(pt)^{W_0} = \{ f \in K_{\mathfrak{h}_d}(pt) \mid wf = f, \text{ for all } w \in W_0 \} \]

Then

\[K_{\mathfrak{h}_d}(pt)^{\text{det}} = \{ f \in K_{\mathfrak{h}_d}(pt) \mid wf = \text{det}(w) f, \text{ for all } w \in W_0 \} \]

is a free \(K_{\mathfrak{h}_d}(pt)^{W_0} \)-module of rank 1.

\(K_{\mathfrak{h}_d}(pt)^{W_0} \) and \(K_{\mathfrak{h}_d}(pt)^{\text{det}} \) have bases

\[m_{\lambda} = \Pi_w y^{\lambda w} \quad \text{and} \quad e_{\lambda^+\mu} = \delta y^{\lambda w}, \quad \lambda, \mu \in P^+ = \mathfrak{h}_d^{W_0} \]

where

\[\Pi_w = \sum_{w \in W_0} w \quad \text{and} \quad \delta = \sum_{w \in W_0} \text{det}(w^{-1}) w \]
Weyl character formula

$K_{tv}(pt) W_0 \rightarrow K_{tv}(pt) \det f \rightarrow a_t f$

a naive basis

m_{λ}

$s_{\lambda} \leftarrow a_{\lambda+\rho} \text{ naive basis}$

m_{λ} are the monomial symmetric functions

s_{λ} are the Weyl characters or Schur functions

Note:

$K_{tv}(pt) W_0 = K_{tv}(pt) = K (G^v \text{-modules})$

and s_{λ} are the classes of the simple modules.
Double affine Hecke algebra \mathcal{H}

\[\mathcal{H} = \text{span} \{ q^k x^w x^{\nu} y^{\tau} / k \in \mathbb{Z}, w \in W_0, x^{\pm} \in \mathbb{Z} \} \]

\[\mathcal{H}^v = \text{span} \{ x^w T_w / w \in W_0 \} \]

\[\mathcal{H}_0 = \text{span} \{ T_w / w \in W_0 \} \]

with

\[q^k \in \mathbb{Z}(\mathcal{H}), \quad x^w x^v = x^{w+v}, \quad y^\nu y^\tau = y^{\nu+\tau} \]

\mathcal{H}_0 is generated by T_1, \ldots, T_n with

\[T_i^2 = (t^i - t^{-i}) T_i + 1 \quad \text{and} \quad \overbrace{T_i T_{i+1} \cdots T_j}^{m_{ij}} = \overbrace{T_{i+1} T_i \cdots T_j}^{m_{ij}} \]

where $m_{ij} = f_i f_j$.

\mathcal{H}^v has a unique 1-dim'l module

\[\text{span} \{ x^w \} \text{ with } T_i x^w = t^i x^w \text{ for } i = 1, \ldots, n. \]

The polynomial representation of \mathcal{H} is

\[\text{Ind}_{\mathcal{H}^v}^{\mathcal{H}}(e) = \mathcal{H}^v = \text{span} \{ q^k x^w x^{\nu} y^{\tau} / k \in \mathbb{Z}, x^{\pm} \in \mathbb{Z} \} \]

\[= K[U(\text{pt}) \mathcal{H}] \]
Macdonald polynomials

Let $t_0, x \in H_0$ be such that

$$ t_i^0 = t_i^0 \quad \text{and} \quad t_i = (-t_i^{-1})^0 $$

for $i = 1, \ldots, n$. At $t = 1$, $t_0 = t_0$ and $x_0 = x_0$.

Then

$$ K_{\tau}(pt) \varepsilon \cdot \tilde{H} \tilde{H} = \varepsilon_0 \tilde{H} \tilde{H} = K_{\tau}(pt) \varepsilon_0 \tilde{H} $$

The nonsymmetric Macdonald polynomial

$\varepsilon \tau = \varepsilon \tau(lg)$ in $K_{\tau}(pt)$ is given by

1. $\varepsilon \tau H$ is an eigenvector of all X^i (acting on $\tilde{H} \tilde{H}$)
2. $\varepsilon \tau = y^i + \text{lower stuff}$

The symmetric Macdonald polynomial

$p_{\tau} = p_{\tau}(lg)$ in $K_{\tau}(pt) W_0$ is given by

$$ p_{\tau} \tilde{H}^0 = \varepsilon \tau \tilde{H} \tilde{H}$$

Define $p_{\tau + n} = p_{\tau + n}(lg)$ in $K_{\tau}(pt)$ by

$$ p_{\tau + n} \tilde{H}^0 = \varepsilon \tau \tilde{H} \tilde{H}$$
Big picture

\[K_{\nu}(pt) W_0 \mapsto H_0 H_0 \mapsto E H_0 \]

\[f \mapsto P_{\nu}(q,t)f \]

\[E_{\lambda} W_0 = P_{\nu}(q,t) W_0 \]

\[P_{\lambda}(q,t) W_0 \mapsto P_{\lambda+\nu}(q,t) W_0 = E_{\lambda+\nu} W_0 \]

At \(q = 0 \) this picture becomes

\[K_{\nu}(pt) W_0 \mapsto H_0 H_0 \mapsto E H_0. \]

\[f \mapsto P_{\nu}(0,t)f \]

\[E_{\lambda} W_0 = P_{\nu}(0,t) W_0 \]

\[S_{\lambda} W_0 = P_{\nu}(0,0) W_0 \mapsto P_{\lambda+\nu}(0,0) W_0 = E_{\lambda+\nu} W_0 \]

where \(H = \text{span} \{ T_w Y_{\lambda^w}^a \mid w \in W_0, \lambda^w \in \Pi \} \).

At \(q = 0, t = 1 \) this becomes

\[K_{\nu}(pt) W_0 \mapsto K_{\nu}(pt) \det \]

\[f \mapsto a_{\nu} f \]

\[\Pi_{\nu} Y_{\lambda}^a = m_{\lambda^\nu} \]

\[S_{\lambda} \mapsto a_{\lambda+\nu} = E_{\nu} Y_{\lambda+\nu} \]
Remarks

(1) At $q \neq 0$, $Z(\mathbb{H})$ is trivial ($Z(\mathbb{H}) = \mathcal{O}[q^{1/2}, 1]$)
At $q = 0$, $Z(\mathbb{H})$ is big, and contains

$$K_{\mathfrak{g}(pt)}^{\omega_0} = Z(\mathbb{H}) \quad \text{(theorem of Bernstein)}.$$

(2) The Satake isomorphism is

$$K_{\mathfrak{g}(pt)}^{\omega_0} \xrightarrow{\gamma} \mathcal{D}_0 H \mathcal{D}_0$$

$$P_{\mathfrak{g}(pt)}(t) \xleftarrow{\iota} \mathcal{D}_0 H \mathcal{D}_0$$

and

$$P_{\mathfrak{g}(pt)}(t)$$ is the Macdonald spherical function, or

 Hague-Littlewood polynomial.

(3) H is a Grothendieck ring (product is convolution)

if I equiv. perverse sheaves on G/I

$\mathcal{D}_0 H \mathcal{D}_0$ = Groth. ring of K-equiv. perverse sheaves

on G/K.

G/I = affine flag variety $G/K =$ loop Grassmanian

$\{5_{\mathfrak{g}, \mathcal{D}_0}\}$ is the Kazhdan-Lusztig basis of $\mathcal{D}_0 H \mathcal{D}_0$

(i.e. $5_{\mathfrak{g}, \mathcal{D}_0}$ is the image of $\mathcal{I}C (K_{\mathfrak{g}(pt)}^{\omega_0}, \mathbb{R}^0)$.
(4) \[K_{\nu} (pt) \text{ det} \]
\[\mathcal{A} \mathcal{H} \mathcal{H} \]
\[\mathcal{A} \mathcal{H} \mathcal{H}_0 \]
are "Fock spaces"

and \[\mathcal{A} \mathcal{H} \mathcal{H} \rightarrow \mathcal{A} \mathcal{H} \mathcal{H}_0 \] are
"boson-Fermion correspondences". The big picture
at \(q = 0 \) is a 1981 paper of Lusztig which
kicked off "Geometric Langlands".

(5) In \(\mathcal{H} \)

\[T_i X^\mu = X^\mu + \left(t_i^+ t_i^- \right) \frac{X^\mu - X^\mu_{i+}}{1 - X^{-i}} \] (Berenstein-Lusztig relation)

is equivalent to

\[T_i X^\mu = X^\mu_{i+} T_i \], where

\[T_i = T_i + \frac{t_i^+ t_i^-}{1 - X^{-i}} = T_i^{-1} + \frac{(t_i^+ t_i^-) X^\mu_{i+}}{1 - X^{-i}} \] (intertwiner)

If \(Y^\mu = s_1 \ldots s_k \) is a minimal length walk
to \(Y^\mu \) in \(W \), then
in \mathcal{A},

$$y^x = T_i \epsilon_1 \ldots T_i \epsilon_2 \quad \text{where}$$

$$\epsilon_x = \begin{cases} +1, & \text{if the } k \text{th step is } + \uparrow \\ -1, & \text{if the } k \text{th step is } + \downarrow \end{cases}$$

and

$$E_x^x = T_i \epsilon_1 \ldots T_i \epsilon_2$$

Using folded alcove walks this can be expanded to give a formula

$$E_x^x = \sum \text{ (explicit) } y_{\text{end}(p)} \text{ folded alcove } \text{ coeffs}$$

$$\text{ paths } p$$

which has similar coefficients to the Haglund-Haiman-Lecouvin formula for E_x^x in type GL_n, and generalizes

$$s_{\alpha}^\nu = \sum y_{\text{wt}(p)} = \sum y_{\text{end}(p)}$$

$$\text{ column strict } \text{ tableau } \nu \text{ Littlemann } \text{ paths } \nu$$

and the tableted positively folded walks labeling points in MV intersections $\text{Im} \cap \mathcal{A} \cap \nu \cap \mathcal{I}$.