Metric and Hilbert spaces

Assignment 2

Due Wednesday Oct 15 at 10am

1. Let
 \[A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \quad \text{and} \quad B = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 < 1\}. \]
 Determine, with proof, whether \(X = A \cup B, Y = \overline{A} \cup B \) and \(Z = \overline{A} \cup B \) are connected subsets of \(\mathbb{R}^2 \) with the usual topology.

2. Let \(X \) and \(Y \) be topological spaces and assume that \(Y \) is Hausdorff. Let \(f : X \to Y \) and \(g : X \to Y \) be continuous functions.
 (a) Show that the set \(\{x \in X \mid f(x) = g(x)\} \) is a closed subset of \(X \).
 (b) Show that if \(f : X \to \mathbb{R} \) and \(g : X \to \mathbb{R} \) are continuous then \(f - g \) is continuous.
 (c) Show that if \(f : X \to \mathbb{R} \) and \(g : X \to \mathbb{R} \) are continuous then \(\{x \in X \mid f(x) < g(x)\} \) is open.

3. Let \(X \) be a complete normed vector space over \(\mathbb{R} \). A sphere in \(X \) is a set \(S(a, r) = \{x \in X : d(x, a) = \|x - a\| = r\} \), for \(a \in X \) and \(r \in \mathbb{R}_{>0} \).
 (a) Show that each sphere in \(X \) is nowhere dense.
 (b) Show that there is no sequence of spheres \(\{S_n\} \) in \(X \) whose union is \(X \).
 (c) Give a geometric interpretation of the result in (b) when \(X = \mathbb{R}^2 \) with the Euclidean norm.
 (d) Show that the result of (b) does not hold in every complete metric space \(X \).

4. Prove that if \(X \) and \(Y \) are path connected then \(X \times Y \) is also path connected.

5. Let \(p \in \mathbb{R}_{>1} \) and define \(q \in \mathbb{R}_{>1} \) by \(\frac{1}{p} + \frac{1}{q} = 1 \).
 (a) Define the normed vector space \(\ell^p \).
 (b) Show that \(\ell^p \) is a Banach space.
 (c) Prove that the dual of \(\ell^p \) is \(\ell^q \).

6. Let \(X = C^1[0, 1] \) and \(Y = C[0, 1] \) so that functions in \(X \) are continuously differentiable and functions in \(Y \) are continuous:
 \[Y = C[0, 1], \quad \text{with norm given by} \quad \|f\| = \sup\{|f(t)| \mid t \in [0, 1]\}, \quad \text{and} \quad X = C^1[0, 1], \quad \text{with norm given by} \quad \|f\|_0 = \|f\| + \|f'\|, \]
 where \(f' = \frac{df}{dt} \). Let \(D : X \to Y \) be the differentiation operator \(Df = \frac{df}{dt} \).
 (1) Show that \(D : (X, \|\cdot\|_0) \to (Y, \|\cdot\|) \) is a bounded linear operator with \(\|D\| = 1 \).
 (2) Show that \(D : (X, \|\cdot\|) \to (Y, \|\cdot\|) \) is an unbounded linear operator.
 (Hint: Consider the sequence of elements \(t^n \) in \(X \)).
7. Let \{a_1, a_2, \ldots \} be a bounded sequence of complex numbers. Define an operator \(T : \ell^2 \to \ell^2 \) by:

\[T(b_1, b_2, \ldots) = (0, a_1 b_1, a_2 b_2, \ldots). \]

(1) Show that \(T \) is a bounded linear operator and find \(\|T\| \).

(2) Compute the adjoint operator \(T^* \).

(3) Show that if \(T \neq 0 \) then \(T^* T \neq TT^* \).

(4) Find the eigenvalues of \(T^* \).

8. Let \([a_{ij}]\) be an infinite complex matrix, \(i, j = 1, 2, \ldots \), such that if \(j \in \mathbb{Z}_{>0} \) then

\[c_j = \sum_i |a_{ij}| \text{ converges, and } \quad c = \sup\{c_1, c_2, \ldots \} < \infty. \]

Show that the operator \(T : \ell^1 \to \ell^1 \) defined by

\[T(b_1, b_2, \ldots) = \left(\sum_j a_{1j} b_j, \sum_j a_{2j} b_j, \ldots \right) \]

is a bounded linear operator and that \(\|T\| = c. \)