1) Let $T: V \to V$ be a self-adjoint linear operator and let v be an eigenvector of eigenvalue λ. Show that $\lambda \in \mathbb{R}$.

2) Let $T: V \to V$ be a self-adjoint linear operator. Let λ and γ be eigenvalues of T with $\lambda \neq \gamma$. Let $X_\lambda = \{ v \in V | Tv = \lambda v \}$ and $X_\gamma = \{ v \in V | Tv = \gamma v \}$. Show that X_λ is orthogonal to X_γ.

3) Let H be a Hilbert space and let $T: H \to H$ be a compact linear operator. Let λ be a non-zero eigenvalue of T and let $X_\lambda = \{ v \in H | Tv = \lambda v \}$. Show that X_λ is finite-dimensional.

4) Let $T: V \to V$ be a bounded linear operator.
 (a) Show that T^*T is self-adjoint.
 (b) Show that if γ is an eigenvalue of T^*T then $\gamma \in \mathbb{R}_{\geq 0}$.