A topological space is a set X with a specification of the open sets of X, i.e. a set X with a collection T of subsets of X such that

(a) $\emptyset \in T$ and $X \in T$,

(b) if $U_i \in T$ then $\bigcup U_i \in T$,

(c) if $U \in T$, $\subset \mathbb{R}_+$ and $U_1, \ldots, U_n \in T$ then $U \cap \cdots \cap U_n \in T$.

Let X and Y be topological spaces.

A function $f : X \to Y$ is continuous if it satisfies

if V is an open set of Y then $f^{-1}(V)$ is an open set of X.

Let X be a topological space.

A subspace of X is a subset E of X with the topology given by making $U \cap E$ open in E if U is open in X.

Example: $X = \mathbb{R}$ and $E = [0,1]$.

Then $[0, \frac{1}{2})$ is not open in $X = \mathbb{R}$

but $[0, \frac{1}{2}) = (-1, \frac{1}{2}) \cap [0,1]$ is open in $[0,1]$.
A topological space X is **connected** if X satisfies:

There exist open sets A, B of X such that

1. $A \neq \emptyset$ and $B \neq \emptyset$
2. $A \cup B = X$ and $A \cap B = \emptyset$.

Let X be a topological space.

A **connected subset** of X is a subset $E \subseteq X$ such that the subspace E of X is a connected topological space.

Theorem Let $f : X \rightarrow Y$ be a continuous function.

If X is connected then $f(X)$ is connected.

Proposition Let $E \subseteq \mathbb{R}$ be a subset of \mathbb{R}.

E is connected if and only if E satisfies:

if $x, y \in E$ and $z \in \mathbb{R}$ and $x < z < y$ then $z \in E$.

Corollary (Intermediate Value Theorem). Let $a, b \in \mathbb{R}$ and let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. If $w \in \mathbb{R}$ and w is between $f(a)$ and $f(b)$ then there exists $z \in (a, b)$ such that $f(z) = w$.
A topological space X is **Hausdorff** if X satisfies:

if $x, y \in X$ and $x \neq y$ then there exist open sets P and Q such that $x \in P$ and $y \in Q$ and $P \cap Q = \emptyset$.

In half English: X is **Hausdorff** if any two points can be separated.

![Diagram](image)

A topological space X is **compact** if X satisfies:

if $P \subseteq X$ and $\bigcup P = X$ then there exists a $n \in \mathbb{N}$ and $U_1, \ldots, U_n \in P$ such that $U_1 \cup U_2 \cup \ldots \cup U_n$.

In half English: X is **compact** if every open cover has a finite subcover.

Examples:
- $[0, 1]$ is compact
- $(0, 1)$ is not compact
- \mathbb{R} is not compact.
Theorem. Let X be a topological space and let $E \subseteq X$.

(a) If X is compact and E is closed then E is compact.

(b) If X is Hausdorff and E is compact then E is closed.

(c) If X is a metric space and E is compact then E is closed and bounded.

(d) If $X = \mathbb{R}^n$ then E is compact if and only if E is closed and bounded.

(e) If X is a metric space then E is compact if and only if E satisfies:
 - if $S \subseteq E$ and S is infinite then there exists $e \in E$ such that e is a close point to S.

Part (e) in half English:

If X is a metric space then E is compact if and only if every infinite subset of E has a close point in E.