A topological space is a set X with a specification of the open sets.

A **closed set** in X is a subset E of X such that E^c is open.

A **closed point** to E is a point $x \in X$ such that if N is a neighborhood of x then $N \cap E^c \neq \emptyset$.

A subset E of X is **compact** if every open cover of E has a finite subcover, i.e.

if S is a collection of open sets of X and $U \cup S = E$ then there exists $\mathcal{F} \subseteq \mathcal{S}$

such that $U, V_1, \ldots, V_n \in \mathcal{F}$ such that $U \cup V_1 \cup \cdots \cup V_n \supseteq E$.

Theorem (a) If $X = \mathbb{R}$ and $E \subseteq X$ then E is compact if and only if E is closed and bounded.

Theorem (b) Let X be a metric space and $E \subseteq X$.

If E is compact then E is closed and bounded.
Let $S \subseteq X$. A cluster point of S is an element $p \in X$ such that if N is a neighborhood of p then there exists $s \in S$ such that $s \in p$ and $s \in N$.

Theorem Let X be a metric space and let $E \subseteq X$. Then E is compact if and only if E satisfies:

if $S \subseteq E$ and S is infinite then there exists $e \in E$ such that e is a cluster point of S.

Main Theorem

(a) let X and Y be topological spaces and let $f : X \to Y$ be a continuous function.

(a1) If X is connected then $f(X)$ is connected.

(a2) If X is compact then $f(X)$ is compact.

(b) If $f : [a,b] \to \mathbb{R}$ is continuous then

(b1) there exists $c \in [a,b]$ such that

if $x \in [a,b]$ then $f(x) \leq f(c)$.

(b2) there exists $d \in [a,b]$ such that

if $x \in [a,b]$ then $f(x) \geq f(d)$.
Mean value theorems

(a) Let $f: [a,b] \rightarrow \mathbb{R}$ be continuous and let $c \in (a,b)$ such that if $x \in [a,b]$ then $f(x) < f(c)$. If $f'(c)$ exists then $f'(c) = 0$.

(b) Same as (a) except for minimums.

(c) If $f: [a,b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a,b) then there exists $c \in (a,b)$ such that $f'(c) = 0$.

(d) If $f: [a,b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a,b) then there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

(e) If $f: [a,b] \rightarrow \mathbb{R}$ and $g: [a,b] \rightarrow \mathbb{R}$ are continuous and f and g are differentiable on (a,b) then there exists $c \in (a,b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$
Example let \(f: [0, 2\pi] \rightarrow \mathbb{C} \) be given by
\[
f(x) = \cos x + i \sin x.
\]
Then \(f(0) = f(2\pi) \) but \(f'(x) \) is never 0.

Pictures

(a) \(f(x) \)

(b) \(f(c) \)
\(f(a) = f(b) \)

(c) \(f(b) \)
\(f(a) \)