Title: Langlands duality for real groups
Speaker: Kari Vilonen (Northwestern University)
Abstract: For real reductive groups the Langlands duality, as refined by Vogan, acquires a symmetry and both sides of the duality can be viewed as representations of reductive groups. Lifting this duality to the level of categories is a conjecture of Soergel. I will discuss this conjecture and its proof in the case when on one side of the duality the group is quasi-split. This is joint work with Roman Bezrukavnikov.