1. Solution.

(a)
\[28 = 2 \times 11 + 6 \]
\[11 = 1 \times 6 + 5 \]
\[6 = 1 \times 5 + 1 \]
\[5 = 5 \times 1 \]

(b)
\[1 = 6 - 1 \times 5 \]
\[= 6 - 1 \times (11 - 6) \]
\[= 2 \times 6 - 1 \times 11 \]
\[= 2 \times (28 - 2 \times 11) - 1 \times 11 \]
\[= 2 \times 28 - 5 \times 11 \]

So in \(\mathbb{Z}_{28} \) \(1 = 2 \times 28 - 5 \times 11 = 0 - 5 \times 11 \) thus \(11^{-1} = -5 = 23 \) in \(\mathbb{Z}_{28} \).

(c) \(11x = 3 \Rightarrow 23 \times 11x = 23 \times 3 \Rightarrow x = 69 = 69 - 2 \times 28 = 13 \) in \(\mathbb{Z}_{28} \).

Let’s check \(11 \times 13 = 143 = 143 - 5 \times 28 = 143 - 140 = 3! \)

(d) The multiplicative inverse of 7 in \(\mathbb{Z}_{77} \) does not exist as \(\gcd(7, 77) = 7 \neq 1! \)

2. Solution. Let \(P_n \) be the proposition that \(A^n \mathbf{u} = \lambda^n \mathbf{u} \) where \(n \) is a positive integer.

(base case \(n = 1 \)) this case is true as \(A \mathbf{u} = \lambda \mathbf{u} \iff A^1 \mathbf{u} = \lambda^1 \mathbf{u} \).

(the inductive step) We assume that \(P_k \) is true:

\[
A^k \mathbf{v} = \lambda^k \mathbf{v} \quad \text{So,} \\
A^{k+1} \mathbf{v} = A (A^k \mathbf{v}) \\
= A (\lambda^k \mathbf{v}) \\
= (\lambda^k) [A \mathbf{v}] \\
= (\lambda^k) [\lambda \mathbf{v}] \\
= \lambda^{k+1} \mathbf{v}
\]

So we have \(A^{k+1} \mathbf{v} = \lambda^{k+1} \mathbf{v} \) which is \(P_{k+1} \). Thus \(P_k \Rightarrow P_{k+1} \) and so by the PRINCIPLE OF MATHEMATICAL INDUCTION \(P_n \) is true for all integral \(n \geq 1 \), that is \(A^n \mathbf{u} = \lambda^n \mathbf{u} \) for all integers \(n \geq 1 \).
3. Solution.

(a) Calculate $n = \phi(m) = \phi(2 \times 29) = (2 - 1) \times (29 - 1) = 1 \times 28 = 28$.

(b) If the encryption key e is 23 the decryption key d will be e^{-1} in \mathbb{Z}_{28} which is 11 from question 1.

(c) We need $51^{11} = (-7)^{11} = -7^{11}$.

\[
\begin{array}{ccc}
7 & \underline{11} & 7 \\
5 & 7^2 & = 49 \\
2 & 49^2 & = 23 \\
1 & 23^2 & = 7
\end{array}
\]

So $-7^{11} = -7 \times 49 \times 7 = -49^2 = -23 = 35$ that is 51 decrypts as 35.

4. Solution.

In an implementation of the RSA public key cryptosystem:

(a) To encrypt we calculate a^e in \mathbb{Z}_m and to decrypt we calculate a^d in \mathbb{Z}_m.

(b) The base m must be the product of distinct primes. $n = \phi(m)$ and e and d are inverses in \mathbb{Z}_n.

(c) To find d we need to know e^{-1} in \mathbb{Z}_n hence we need to know $n = (p - 1) \times (q - 1)$ and to calculate this we need to know the prime factorization of $m = pq$. With current technologies and algorithms this is impracticable (may take more than a lifetime) if p and q are both about 200 digits.

[6 marks]
5. Solution.

(a) The rank of A is 3 (the number of row leaders in RREF(A)).

(b) B has row leaders in columns 1, 2 and 4 thus a basis for the column space of A consists of the first, second and fourth columns of A that is $\{[1 \ 2 \ -1 \ 3]^T, \ [3 \ 5 \ -2 \ -2]^T, \ [0 \ -1 \ 1 \ 1]^T\}$. Please note the first 3 columns of A do not form a basis as they are not linearly independent.

(c) The dimension of the row space of A is 3 (the rank of A).

(d) There are 4 rows of A which cannot be linearly independent in a dimension 3 space.

(e) The non-zero rows of B form a basis for the row space of A that is $\{[1 \ 0 \ 26 \ 0 \ -6], \ [0 \ 1 \ -9 \ 0 \ 10], \ [0 \ 0 \ 0 \ 1 \ 38]\}$ are a basis. Note that the first 3 rows of A are not linearly independent (row3=row1-row2) rows 1, 2, 4 of A would form a basis for the rowspace though.

(f) The vectors $(1, 2, -1, 3), (3, 5, -2, -2), (-1, 7, -8, 96), (0, -1, 1, 1), (24, 0, 24, 0)$ are the columns of A and these only span a dimension 3 space (the column space of A) thus they do NOT span \mathbb{R}^4.

(g) By interpreting B in particular the third column we see that (the third column of A) $(-1, 7, -8, 96) = 26(1, 2, -1, 3) - 9(3, 5, -2, -2)$ (a linear combination of the first 2 columns of A)

(h) If $Av = 0$ where $v^T = [v_1 \ v_2 \ v_3 \ v_4 \ v_5]$ from B=rref(A) we see that v_3 and v_5 are free variables and from row 3 of B $v_4 = -38v_5$ and from row 2 (of B) $v_2 = 9v_3 - 10v_5$ and from row 1 (of B) $v_1 = -26v_3 + 6v_5$ so

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
\end{bmatrix} = \begin{bmatrix}
 -26v_3 + 6v_5 \\
 9v_3 - 10v_5 \\
 v_3 \\
 -38v_5 \\
 v_5 \\
\end{bmatrix} = \begin{bmatrix}
 -26v_3 \\
 9v_3 \\
 v_3 \\
 0 \\
 0 \\
\end{bmatrix} + \begin{bmatrix}
 6v_5 \\
 -10v_5 \\
 0 \\
 -38v_5 \\
 v_5 \\
\end{bmatrix} = v_3 \begin{bmatrix}
 -26 \\
 9 \\
 1 \\
 0 \\
 0 \\
\end{bmatrix} + v_5 \begin{bmatrix}
 6 \\
 -10 \\
 0 \\
 -38 \\
 1 \\
\end{bmatrix}.
\]

So a basis for the solution space of A is $\left\{\begin{bmatrix}
 -26 \\
 9 \\
 1 \\
 0 \\
 0 \\
\end{bmatrix}, \begin{bmatrix}
 6 \\
 -10 \\
 0 \\
 -38 \\
 1 \\
\end{bmatrix}\right\}$.

(i) $5 = 3 + 2$ the number of columns of A is equal to the rank of A + the nullity of A.

Subspace Theorem

IF \(W \subseteq \mathbb{R}^n \) satisfies

1. \(W \) is non empty.
2. \(u, v \in W \Rightarrow (u + v) \in W \)
3. \(\alpha \in \mathbb{R}, u \in W \Rightarrow \alpha u \in W \)

THEN

\(W \) is a subspace of \(\mathbb{R}^n \).

(b) Let \(P = \{ (x, y, z) : x + y + z \leq 0 \} \subset \mathbb{R}^3 \).

\((-1, -1, -1) \in P \) as \((-1) + (-1) + (-1) = -3 \leq 0 \) but \((-1) \cdot (-1, -1, -1) = (1, 1, 1) \notin P \) as \(1 + 1 + 1 \not\leq 0 \) thus \(P \) is not closed under scalar multiplication and so is NOT a subspace of \(\mathbb{R}^3 \).

(c) \(\text{SolutionSpace}(A) = \{ u : Au = 0 \text{big} \} \).

(d) Let \(0 \) be the zero vector in \(\mathbb{R}^n \) it is true that \(A0 = 0 \) (where the zero on the RHS is in \(\mathbb{R}^m \)) thus \(\text{SolutionSpace}(A) \) is non empty.

Suppose \(u \) and \(v \) are both in \(\text{SolutionSpace}(A) \) then \(Au = 0 \) and \(Av = 0 \) so \(A(u + v) = Au + Av = 0 + 0 = 0 \) thus \(u + v \) is in \(\text{SolutionSpace}(A) \). So \(\text{SolutionSpace}(A) \) is closed under addition.

Suppose \(u \in \text{SolutionSpace}(A) \) and \(\alpha \in \mathbb{R} \) then \(A(\alpha 0) = \alpha (A0) = \alpha 0 = 0 \) thus \(\alpha (0) \in \text{SolutionSpace}(A) \) so \(\text{SolutionSpace}(A) \) is closed under scalar multiplication.

Thus by the subspace theorem (we have established 1, 2, 3) the \(\text{SolutionSpace}(A) \) is a subspace of \(\mathbb{R}^n \).
7. **Solution.** Consider the binary linear code \(C \) with codewords \(\{ c_1, c_2, c_3, c_4 \} = \{ 00000000, 101101101, 010110111, 111011010 \} \),

(a) Using nearest neighbour decoding, correct the words:

(i) \(001101101 \rightarrow 101101101 \) (distance 1 away by changing the first bit);

(ii) \(001011010 \) is distance 4 from \(c_1 \) is distance 6 from \(c_2 \) is distance 6 from \(c_3 \) and is distance 2 from \(c_4 \) thus \(001011010 \rightarrow 111011010 \) (corrects to \(c_4 \)).

(b) As the code \(C \) is linear the minimum distance of the code is the minimum weight amongst the non-zero words which by inspection is 6.

(c) The code \(C \) can:

(i) correct 2 errors;

(i) detect 5 errors.

(d) The dimension of the code \(C \) is 2 as there are 4 codewords and \(|\mathbb{Z}_2|^2 = 4 \).

(e) The set \(\{ 101101101, 010110111 \} \) is linearly independent (consider the first two bits 10 and 01 are not linearly dependent) and as the code has dimension 2, 2 linearly independent vectors in \(C \) form a basis for the code \(C \).

(f) \(H \) has rank 8 (as it is in RREF form) so by the Rank-Nullity theorem the solution space to \(H \) has dimension 2. Now both the vectors in the basis for \(C \) above are in the solution space for \(H \) (as seen in the MatLab output) thus \(C \subseteq \text{SolutionSpace}(H) \) but as \(\text{SolutionSpace}(H) \) and \(C \) have the same dimension (2), \(\text{SolutionSpace}(H) = C \). This is equivalent to \(H \) being a check matrix for the code \(C \).
8. Solution.

(a) \[A = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad y = \begin{bmatrix} 9 \\ -7 \\ 3 \\ 1 \end{bmatrix} \]

\[A^T A = \begin{bmatrix} 4 & -4 \\ -4 & 14 \end{bmatrix} \]

\[A^T y = \begin{bmatrix} 4 \\ -14 \end{bmatrix} \]

So solving \(A^T A \bar{u} = A^T y \) for \(\bar{u} \) as follows

\[\begin{bmatrix} 4 & -4 \\ -4 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

so \(a = 0 \) and \(b = -1 \) Thus the line of best fit is \(y = -x \).

(b) \[A = \begin{bmatrix} 1 & -3 & 9 \\ 1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \]

(c) We would expect a least squares error of 0 as it is possible to find a cubic going through these 4 (or any 4 points) points.

(a) (i) \(\langle \ , \rangle \) must satisfy

- \(\langle \mathbf{u}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{u} \rangle \) for all \(\mathbf{u} \) and \(\mathbf{w} \).
- \(\langle \mathbf{u}, \mathbf{w} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle \) for all \(\mathbf{u}, \mathbf{w} \) and \(\mathbf{v} \).
- \(\langle \mathbf{u}, \alpha \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle \) for all \(\mathbf{u}, \mathbf{w} \) and \(\alpha \in \mathbb{R} \).
- \(-\langle \mathbf{u}, \mathbf{u} \rangle \geq 0 \) for all \(\mathbf{u} \).
- \(-\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Rightarrow \mathbf{u} = \mathbf{0} \).

(ii) Use this inner product to find

\[\| (1, -2) \| = \langle (1, -2), (1, -2) \rangle \sqrt[1/2]{5 \times 1^2 + 4 \times 1 \times -2 + 4 \times -2 \times 1 + 5 \times (-2)^2} = \sqrt{5 - 16 + 20} = 3. \]

\[\langle (1, -2), (-2, 1) \rangle = (5 \times 1 \times (-2) + 4 \times (-2) \times (-2) + 4 \times 1 \times 1 + 5 \times -2 \times 1) = -10 + 16 + 4 - 10 = 0. \]

(b) Let us suppose that the following formula

\[\langle (u_1, u_2), (v_1, v_2) \rangle = u_1v_1 - 3u_1v_2 - 3u_2v_1 + u_2v_2 \]

defines an inner product on \(\mathbb{R}^2 \).

(i) \(\| (1, 1) \|^2 = \langle (1, 1), (1, 1) \rangle = 1^2 - 3 \times 1^2 - 3 \times 1^2 + 1^2 = -4. \)

(ii) The formula does not form an inner product as \(\langle (1, 1), (1, 1) \rangle = -4 < 0 \) violating positive definiteness which means the length of \((1, 1) = \| (1, 1) \| = \sqrt{-4} \) is not a real number.
10. **Solution.** Let W be the span of the set $B = \{(-2, 2, 1, 0), (-1, -2, 2, 0)\}$.

(a) \[u_1 = \frac{1}{\|b_1\|} b_1 = \frac{1}{3}(-2, 2, 1, 0) \]

\[w_2 = b_2 - ((b_2 \cdot u_1) u_1) \]
\[= (-1, -2, 2, 0) - \left((-1, -2, 2, 0) \cdot \frac{1}{3}(-2, 2, 1, 0) \right) \frac{1}{3}(-2, 2, 1, 0) \]
\[= (-1, -2, 2, 0) - \left(\frac{1}{3}(-2, 2, 1, 0) \right) \]
\[= (-1, -2, 2, 0) \]

\[u_2 = \frac{1}{\|w_2\|} w_2 \]
\[= \frac{1}{3}(-1, -2, 2, 0) \]

Thus \[U = \left\{ \frac{1}{3}(-2, 2, 1, 0), \frac{1}{3}(-1, -2, 2, 0) \right\} \]

is an orthonormal basis (w.r.t. the usual Euclidean inner product) for W.

(b) \[p = \text{Proj}_W(v) \]
\[= (v \cdot u_1) u_1 + (v \cdot u_2) u_2 \]
\[= \left((-3, 0, 3, 2) \cdot \frac{1}{3}(-2, 2, 1, 0) \right) \frac{1}{3}(-2, 2, 1, 0) + \]
\[\left((-3, 0, 3, 2) \cdot \frac{1}{3}(-1, -2, 2, 0) \right) \frac{1}{3}(-1, -2, 2, 0) \]
\[= \frac{1}{9}(-2, 2, 1, 0) + \frac{1}{9}(-1, -2, 2, 0) \]
\[= (-2, 2, 1, 0) + (-1, -2, 2, 0) \]
\[= (-3, 0, 3, 0) \]

(c) By the properties of the orthogonal projection \[w_3 = v - p = (0, 0, 0, 2) \] is perpendicular to the basis U and as \[\left\{ \frac{1}{3}(-2, 2, 1, 0), \frac{1}{3}(-1, -2, 2, 0), (0, 0, 0, 2) \right\} \] is an orthogonal set it is a basis for $\langle \{u_1, u_2, v\} \rangle = \langle \{u_1, u_2, p\} \rangle$ and so normalizing the last vector (to obtain an orthonormal set) as \[u_3 = \frac{1}{\|w_3\|} w_3 = (0, 0, 0, 1) \] we have \[U' = \left\{ \frac{1}{3}(-2, 2, 1, 0), \frac{1}{3}(-1, -2, 2, 0), (0, 0, 0, 1) \right\} \] as an orthonormal basis for $W' = \langle \{u_1, u_2, v\} \rangle$.

The Gram Schmidt algorithm applied blindly would arrive at exactly this othonormal basis – the above calculates the w_3 of Gram Schmidt from first principles rather than rote application of the algorithm.
11. Solution.

(a) \(w = T(x) = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \).

(b) \(v = S(w) = \begin{bmatrix} 1 & 6 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} \).

(c) The standard matrix for \(S \circ T \)

\[A_{S\circ T} = A_S A_T = \begin{bmatrix} 1 & 6 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ -2 & -2 \end{bmatrix} \]

(d) The image \(S \circ T(x) \) is

\[A_{S\circ T} x = \begin{bmatrix} 5 & 6 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} \]

Alternatively \(S(T(x)) = S(w) = v \) as given in (a) and (b).

(e) We notice that \(S(T(x)) = 2x \) and so \(x \) is an eigenvector with eigenvalue 2 for \(A_{S\circ T} \).

12. Solution.

(a) Note from the previous question we have that 2 is an eigenvalue with eigenvector \([2 - 1]^T \) so as the sum of the eigenvalues is the trace of the matrix we have the other eigenvalue being 1. This gives \(A - 1I = \begin{bmatrix} 4 & 6 \\ -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \) which has non-zero vector \([3 - 2]^T \) in its solution space so \([3 - 2]^T \) is an eigenvector with eigenvalue 1.

Or calculating from scratch

\[\det(A-\lambda I) = \det \left(\begin{bmatrix} 5-\lambda & 6 \\ -2 & -2-\lambda \end{bmatrix} \right) = (5-\lambda)(-2-\lambda)+12 = 2-3\lambda+\lambda^2 = (\lambda)(2-\lambda). \]

So the eigenvalues are 1 and 2 we can calculate the eigenvector \([3 -2]^T \) for eigenvalue 1 exactly as above.

If \(\lambda = 2 \)

\[A - \lambda I = \begin{bmatrix} 3 & 6 \\ -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \]

which has \([2 - 1]^T \) in its solution space, thus \([2 - 1]^T \) is an eigenvector with eigenvalue 2.

(b) As the line is the span of the eigenvector \([2 -1]^T \) the line will get mapped on top of itself setwise and pointwise will be stretched by a factor of 2 that is \(T(\alpha[2 -1]^T) = 2\alpha[2 -1]^T. \)
13. Solution.

(a) \[[T]_{s \rightarrow s} = \begin{bmatrix} 5 & 6 \\ -2 & -2 \end{bmatrix} \]

(b) \[P_{B \rightarrow S} = \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix} \]

(c) \[P_{S \rightarrow B} = (P_{B \rightarrow S})^{-1} = \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & -2 \\ 2 & 3 \end{bmatrix} \]

(d) \[[w]_B = P_{S \rightarrow B} [w]_S = \begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} -8 \\ 5 \end{bmatrix} \]

So \([-2 \quad -1]^T = -8b_1 + 5b_2 \]

(e) \[[T]_{B \rightarrow B} = P_{S \rightarrow B} [T]_{s \rightarrow s} P_{B \rightarrow S} \]
\[= \begin{bmatrix} -1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix} \]
\[= \begin{bmatrix} -1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix} \]
\[= \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \]

That \([T]_{B \rightarrow B}\) is diagonal should come as no surprise as the vectors in \(B\) are eigenvectors of \(A\) with eigenvalues 1 and 2 respectively (as seen in the previous question).

(f) \[[T(w)]_B = [T]_{B \rightarrow B} [w]_B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -8 \\ 5 \end{bmatrix} = \begin{bmatrix} -8 \\ 10 \end{bmatrix} \]

(a)
\[
\begin{bmatrix}
7 & 24 & 0 \\
24 & -7 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
4 \\
3 \\
0
\end{bmatrix}
=
\begin{bmatrix}
100 \\
96 - 21 \\
0
\end{bmatrix}
= 25
\begin{bmatrix}
4 \\
3 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
7 & 24 & 0 \\
24 & -7 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
3 \\
-4 \\
0
\end{bmatrix}
=
\begin{bmatrix}
21 - 96 \\
72 + 28 \\
0
\end{bmatrix}
= -25
\begin{bmatrix}
3 \\
-4 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
7 & 24 & 0 \\
24 & -7 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

thus
\[
\begin{bmatrix}
4 \\
3 \\
0
\end{bmatrix},
\begin{bmatrix}
3 \\
-4 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
are eigenvectors of the matrix \(A\) with eigenvalues 25, -25 and 1 respectively.

and find their associated eigenvalues.

(b) The matrix \(P\) which has the eigenvectors of \(A\) as columns and \(D\) being the diagonal matrix with the corresponding eigenvalues as diagonal entries (in the appropriate order) explicitly
\[
P = \begin{bmatrix}
4 & 3 & 0 \\
3 & -4 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{and} \quad
D = \begin{bmatrix}
25 & 0 & 0 \\
0 & -25 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

(c) We normalize the already orthogonal columns of \(P\) to find
\[
Q = \begin{bmatrix}
\frac{4}{5} & \frac{3}{5} & 0 \\
\frac{3}{5} & -\frac{4}{5} & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

15. Solution. Let \(A\) be an \(n \times n\) real matrix.

(a) The \(n \times n\) matrix \(A\) is diagonalizable IF AND ONLY IF \(A\) has \(n\) linearly independent eigenvectors.

(b) \(A\) is orthogonally diagonalizable IF \(A\) is symmetric that is \(A^T = A\).

(c) If \(A\) is orthogonally diagonalizable then \(Q^T AQ = D \iff A = QDQ^T\) (as \(Q\) is orthogonal if and only if \(Q^{-1} = Q^T\)) thus
\[
A^T = (QDQ^T)^T = (Q^T)^T D^T Q^T = QDQ^T = A
\]
the matrix \(A\) is symmetric.