Tutors to mark questions 2 and 3

1. \(X \sim \text{Bin}(n, p)\) and \(Y \sim \text{Bin}(1, 0.5)\), and \(Z = X^Y\).

(a) \[
\eta(y) = E(Z|Y = y) = E(X^y|Y = y) = \begin{cases} E(X^0|Y = 0) = E(1) = 1 \\ E(X^1|Y = 1) = E(X) = np. \end{cases}
\]

Therefore,
\[
\eta(y) = \begin{cases} 1, & y = 0 \\ np, & y = 1, \end{cases}
\]

and
\[
\eta(Y) = \begin{cases} 1, & Y = 0 \\ np, & Y = 1. \end{cases}
\]

So, \(\eta(Y)\) is a discrete random variable with pmf given by

\[
P(\eta(Y) = \mathbb{E}(X|Y) = v) = \begin{array}{cc} v & \frac{1}{2} \\ np & \frac{1}{2} \end{array}
\]

(b) \[
\nu(y) = \text{Var}(Z|Y = y) = \text{Var}(X^y|Y = y) = \begin{cases} \text{Var}(X^0|Y = 0) = \text{Var}(1) = 0 \\ \text{Var}(X^1|Y = 1) = \text{Var}(X) = np(1 - p). \end{cases}
\]

Therefore,
\[
\nu(y) = \begin{cases} 0, & y = 0 \\ np(1 - p), & y = 1, \end{cases}
\]

and
\[
\nu(Y) = \begin{cases} 0, & Y = 0 \\ np(1 - p), & Y = 1. \end{cases}
\]

So, \(\nu(Y)\) is a discrete random variable with pmf given by

\[
P(\nu(Y) = \mathbb{V}(X|Y) = v) = \begin{array}{cc} v & \frac{1}{2} \\ np(1 - p) & \frac{1}{2} \end{array}
\]

(c) \[
\mathbb{E}(Z) = \mathbb{E}(\mathbb{E}(Z|Y)) = \frac{1}{2} \times 1 + \frac{1}{2} \times np = \frac{1}{2}(1 + np).
\]
(d)
\[\mathbb{V}(\mathbb{E}(Z|Y)) = \mathbb{E}(\mathbb{E}(Z|Y)^2) - \mathbb{E}(\mathbb{E}(Z|Y))^2 \]
\[= 1^2 \times \frac{1}{2} + (np)^2 \times \frac{1}{2} - \left(\frac{1}{2}(1 + np) \right)^2 \]
\[= \frac{1}{4}(np - 1)^2. \]
\[\mathbb{E}(\mathbb{V}(Z|Y)) = 0 \times \frac{1}{2} + np(1 - p) \times \frac{1}{2} = \frac{1}{2}np(1 - p). \]
Therefore,
\[\mathbb{V}(Z) = \mathbb{V}(\mathbb{E}(Z|Y)) + \mathbb{E}(\mathbb{V}(Z|Y)) = \frac{1}{4}(np - 1)^2 + \frac{1}{2}np(1 - p). \]

2. We have that \(N \overset{d}{=} Pn(\Lambda) \) where \(\Lambda \overset{d}{=} \text{exp}(1) \). Then \(P(N = i) = \left(\frac{1}{2} \right)^{i+1} \implies N \overset{d}{=} \text{G}(\frac{1}{2}) \) (see Tutorial 10, Ghahramani Section 10.4, Question 9). Therefore, \(V(N) = \frac{1 - P}{np^2} = 2 \). We also have that \(\eta(\lambda) = E(N|\Lambda = \lambda) = \lambda \), therefore \(E(N|\Lambda) = \Lambda \). Also, \(\nu(\lambda) = V(N|\Lambda = \lambda) = \lambda \), therefore \(V(N|\Lambda) = \Lambda \). Thus,
\[V(N) = E(V(N|\Lambda)) + V(E(N|\Lambda)) = E(\Lambda) + V(\Lambda) = 1 + 1 = 2. \]

3. Use the inverse transformation method to get \(X \overset{d}{=} -\frac{1}{\lambda} \log(1 - U) \) where \(U \overset{d}{=} \text{R}(0, 1) \). From Part 1 we have that
\[E(T) = \mathbb{E}(X_1)\mathbb{E}(N) = \frac{10}{\lambda} \] (see Slide 361), and
\[V(T) = \mathbb{V}(X_1)\mathbb{E}(N) + (\mathbb{E}(X_1))^2\mathbb{V}(N) = \frac{100}{\lambda^2} + \frac{10}{\lambda^2} = \frac{20}{\lambda^2} \] (see Slide 368).

If, for example, \(\lambda = \frac{1}{2} \), simulation should give \(E(T) \approx 20 \) and \(V(T) \approx 80 \). The empirical pdf of \(T \) is unimodal and slightly skewed to the right, see below.
4. We have that \(X \sim R(0,1), Y = \sqrt{X} = \phi(X), \) and \(\mu = \frac{1}{2} \) and \(\sigma^2 = \frac{1}{12}. \)

(a) \(\psi(x) = x^{\frac{1}{2}} \implies \psi(\mu) = \frac{1}{\sqrt{2}}. \)

\[
\psi'(x) = \frac{1}{2} x^{-\frac{1}{2}} \implies \psi'(\mu) = \frac{1}{\sqrt{2}}.
\]

\[
\psi''(x) = -\frac{1}{4} x^{-\frac{3}{2}} \implies \psi''(\mu) = -\frac{1}{\sqrt{2}}.
\]

\[
E(\psi(X)) \approx \frac{1}{\sqrt{2}} + \frac{1}{2} \left(-\frac{1}{\sqrt{2}} \right) \frac{1}{12} = \frac{23}{24\sqrt{2}}.
\]

\[
V(X) \approx \left(\frac{1}{\sqrt{2}} \right)^2 \frac{1}{12} = \frac{1}{24}.
\]

(b) \(l(x) = \frac{1}{\sqrt{2}} + \frac{1}{12} (x - \mu) \) and \(q(x) = \frac{1}{\sqrt{2}} + \frac{1}{12} (x - \mu) - \frac{1}{2\sqrt{2}} (x - \mu)^2. \)

The approximation is good as \(l(x) \) and \(q(x) \) are close to \(\psi(x) \) when \(x \in (0,1). \)

(c) The simulated values for \(E(Y) \) and \(V(Y) \) are approximately equal to \(E(\psi(X)) \) and \(V(\psi(X)) \) given in Part (a) above.