DISCRETE GROUPS IN E^2

We now want to study the symmetries of repeating patterns in the plane E^2.

References:
- Notes §2.9
- M. Artin, Algebra, chapter 5

We will look at discrete symmetry groups, i.e., exclude:

1. patterns with translations by arbitrarily short distances

 e.g. line

2. patterns with rotations by arbitrarily small angles

 e.g. Circle

Definition: A subgroup G of $\text{isom}(E^2)$ is discrete if there is $\varepsilon > 0$ s.t.

- (i) each non-zero translation in G has translation distance $\geq \varepsilon$, and
- (ii) each non-trivial rotation in G has rotational angle $\geq \varepsilon$.

(We don't need to put any condition on reflections or glide reflections.)

See handout and the end of the printed notes for some sample patterns with discrete symmetry groups!

Given any discrete subgroup G of $\text{isom}(E^2)$ we can built up patterns with G as symmetry group as follows:

Start with a figure (e.g. R) with no symmetries except the identity. Then apply all the elements of G to the figure.

(The computer program Kali lets you build up beautiful patterns in this way—as in a Kaleidoscope.)

Recall that each isometry of E^2 is built up from an orthogonal part and a translational part:

$(a, b) : x \mapsto Ax + b$, $A \in O(2)$, $b \in \mathbb{R}^2$

Further there is a homomorphism

$\pi : \text{isom}(E^2) \to O(2)$

with $\ker \pi = T = \{ \text{all translations} t : \varepsilon(\mathbb{R}^2, +) \}$

We now analyse a discrete group $G \subset \text{isom}(E^2)$ by studying

(i) the translational subgroup

$G \cap T = \text{subgroup of } T$

(ii) the “point group”

$G = \pi(G) = \text{subgroup of } O(2)$.
e.g. For $G = \text{symmetries of hexagonal tiling}$:

- **Translational subgroup** $G \times T$:
 generated by translations T_1, T_2.

- **Point group** $\overline{G} \cong \Pi(G) \cong D_6$
 generated by:
 $$\begin{bmatrix}
 \cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\
 \sin \frac{\pi}{3} & \cos \frac{\pi}{3}
 \end{bmatrix},
 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (rotation by $\frac{\pi}{3}$) (reflection)

CAUTION: The point group $\Pi(G)$ need not be a subgroup of G.

- **Example:** $G = \text{generated by a glide reflection}$:
 $$\ldots R B R B R \ldots$$

- **$G \times T$** generated by one translation T.

- **Point group** $\overline{G} \cong \Pi(G) \cong D_6$
 generated by one reflection

 But G contains no element of order 2 (only translations & glides).

Classification of discrete subgroups of $\text{isom}(\mathbb{R}^2)$

1. **Translation subgroups**:
 $$G \times T = \{\text{all translations in } G\}$$
 corresponds to a subgroup of $(\mathbb{R}^2, +)$:
 $$LG = \{a \in \mathbb{R}^2 : t \in G \}$$
 *translation by a.

 Note: G discrete \Rightarrow LG is also discrete:
 *there is $\varepsilon > 0$ such that LG
 contains no vector of length $< \varepsilon$, except the zero vector.

 This means: that distinct vectors in LG
 are separated by at least ε.

For hexagonal tiling with shading:

- **Translational subgroup**
 is the same (generated by T_1, T_2).

- **Point group** $\overline{G} \cong D_6$
 generated by:
 $$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
Proposition 1: Every discrete subgroup \(L \) of \(\mathbb{R}^2 \) is either
(i) \(L = \{0\} \)
(ii) \(L \cong \mathbb{Z} \), generated by a non-vector \(a \):
\[
L = \{ na : n \in \mathbb{Z} \}
\]
or (iii) \(L \cong \mathbb{Z} \times \mathbb{Z} \), generated by two linearly independent vectors \(a, b \):
\[
L = \{ na + mb : n, m \in \mathbb{Z} \}
\]
(Then \(L \) is called a lattice in \(\mathbb{R}^2 \).)

Proof: See Artin, Prop 4.5.

In (ii), take \(a = a \) a non-zero vector of shortest length in \(L \).

In (iii), can take \(a = a \) shortest non-zero vector in \(L \), \(b = b \) shortest vector not a multiple of \(a \).

The point group \(\overline{G} = \pi(G) \subseteq O(2) \).

From the classification of isometries, \(g = (A, b) : x \mapsto Ax + b \) is a non-trivial rotation about some point \(\iff \pi(g) = A \subseteq O(2) \) is a non-trivial rotation.

So: if \(G \) is discrete, so is \(\overline{G} = \pi(G) \subseteq O(2) \).

Lemma: A discrete subgroup of \(O(2) \) is finite.

Proof: Exercise (Idea: rotation angles are separated by at least \(\varepsilon > 0 \) \(\Rightarrow \) there are only finitely many rotations.)

Corollary: The point group \(\overline{G} = \pi(G) \) is cyclic or dihedral.

(From the result of last lecture.) Combining these facts about the translation group \(L_G \) & point group \(\overline{G} \) gives a broad classification of discrete groups \(G \) into 3 classes:

(i) If \(L_G = \{0\} \), then \(\pi : G \to \pi(G) = \overline{G} \) has trivial kernel \(\ker \pi = L_G = \{0\} \).

So \(G \cong \overline{G} \) is finite; hence cyclic or dihedral.

(This gives infinitely many groups!)
(i) If $L_G \cong \mathbb{Z}$, then we obtain symmetries of "frieze patterns" or "strip patterns".
It turns out that there are 7 possible symmetry groups for these!

(iii) If $L_G \cong \mathbb{Z} \times \mathbb{Z}$, we obtain the "wallpaper groups."
It turns out that there are exactly 17 of these groups!

Question: Why are there only finitely many possibilities in case (ii), (iii)?