1. Evaluate the path integral \(\int_C f \, ds \) where \(f = x + xy \) and the path \(C \) is
 (a) a straight line from \((0, 0)\) to \((3, 6)\)
 (b) the curve resulting from the intersection of the cone \(z = 3 \sqrt{x^2 + y^2} \) and the sphere \(x^2 + y^2 + z^2 = 10 \). Assume the curve is oriented anticlockwise.

2. Parameterize the following surfaces. In each case do a simple sketch of the surface.
 (a) A cylinder of radius 4, with axis coinciding with the \(y \) axis, starting at \(y = -2 \) ending at \(y = 2 \). Hint: Use trigonometric parameters.
 (b) The part of a cone \(x = \sqrt{y^2 + z^2} \), starting at \(x = 0 \) ending at \(x = 4 \) and with \(z \geq 0 \).

3. Calculate the area of the surface \(\Phi(\rho, \theta) \) (a “spiral ramp”) parameterised by
 \[
 x = 4 \rho \cos(\theta), \quad y = 4 \rho \sin(\theta), \quad z = \theta
 \]
 for \(0 \leq \rho \leq 2 \) and \(0 \leq \theta \leq \pi/2 \).

4. Let \(S \) be the surface of the solid region formed from the intersection of the solid region underneath the cone \(z = 2 - 3 \sqrt{x^2 + y^2} \) and above the region above the plane \(z = 0 \).
 (a) Sketch the surface showing an example of an outward normal on each part of the surface.
 (b) Find the outward normals to the surface \(S \).
 (c) Evaluate the integral
 \[
 \iint_S F \cdot dS
 \]
 where \(F = (x, y, 0) \). Take the normal pointing outwards from \(S \).

Note: Full working must be shown in your solutions. Marks will be deducted for incomplete working.