Tute 6: Revised Simplex Method

- Computationally efficient form of the Simplex Method → used in commercial LP solvers

- **Advantage:** at each iteration, only a small percentage of the elements in the tableau are used

- **Notation:**
 - B refers to basic variables
 - NB refers to non-basic variables
 - I_B index set for the current basis (ORDER IS IMPORTANT → the corresponding columns should form the identity mat.)
 - I_{NB} index set for the current non-basic variables (write in ascending order)
 - b RHS from INITIAL TABLEAU
 - c_B negative of the reduced costs of the current basic vars (from INITIAL TABLEAU)
 - c_{NB} negative of the reduced costs of the current non-basic vars (from INITIAL TABLEAU)
 - A_{NB} columns of the current non-basic variables (from INITIAL TABLEAU)
 - $[A_B]^{-1} = \hat{B}$ the columns of the current tableau corresponding to the basic variables in the initial tableau

Revised Simplex Method Steps

Step 1: Set up initial tableau. Identify I_B and I_{NB}.

Step 2-4: Greedy Rule (select new B.V.), Ratio Test (as normal)

Step 5: Update I_B, I_{NB}. Specify c_B, c_{NB}.

Step 6: Update \hat{B} by pivoting [only apply the row operations to the columns of the current tableau corresponding to the Basic Var's in the initial tableau]

Step 7: Construct T, where $T = \begin{bmatrix} \hat{B} & 0 \\ c_B & 1 \end{bmatrix}$.

Step 8: Update the z-row of the non-basic variables by calculating new z-row = final row of $T \times$ initial tableau (For a Max problem) If this vector contains all non-negative elements, go to Step 11. Else continue.

Step 9: Select most negative element of new z-row as the new B.V.

Step 10: Specify the column of coefficients in the updated tableau corresponding to the new basic variable:

$$a' = Ta$$

Update the RHS using

$$b' = Tb$$

Now perform the Ratio Test as normal. Go to Step 5.

Step 11: Specify the optimal solution, using

$$x_B = \hat{B}b$$

$$x_{NB} = (0, 0, ..., 0)$$

$$z = c_Bx_B$$

(DON'T FORGET: $x^* = ... \; z^* = ...$)