Components in an LP problem may change:
- production costs
- availability of resources
- value of goods

Some changes are structural...
(new variable, elimination of some constraints, \(\leq \) to \(\geq \))
... and others are parametric
(changes in \(A, b, c \))

So, we can change LP models in two ways:

1) **Structural Changes**
 - add/remove decision variables (change in \(n \))
 - add/remove constraints (change in \(m \))

2) **Parametric Changes**
 - change in obj. function coefficients (c)
 - change in RHS values (b)
 - change in coefficient matrix (A)

The investigation of how parametric changes affect the optimal solution is called **Sensitivity Analysis**.

Key Observation (max problem)

A Simplex tableau is optimal **if and only if**
- each constraint has a non-negative RHS
- each variable has a non-negative coefficient in the \(z \)-row

After changes in parameters we have the following possibilities:

1. old optimal solution remains optimal
2. old optimal solution remains feasible but not optimal
 - (i) old basis remains
 - (ii) change in basis

Changes in components of the c vector (objective function)

Do not affect feasibility

So: will the old optimal solution still be optimal?

→ check new reduced costs of non-basic variables
 - for \(\text{opt} = \text{max} \) need \(RC \geq 0 \)
 - for \(\text{opt} = \text{min} \) need \(RC \leq 0 \)
 - if **No** we need to find the new optimal solution

Changes in components of b (RHS)

Have no effect on reduced costs

So: will the old optimal solution still be feasible?

→ consider the new RHS values:
 - if one or more are negative then the old optimal solution is infeasible
 - otherwise
 - the new optimal solution has the same basis and the new optimal values are given by the new RHS.