1. Write the dual of the following linear programming problem by first writing it in standard form.

\[
\begin{align*}
\text{max} & \quad 3x_1 + 2x_2 - x_4 \\
\text{subj to} & \quad 4x_1 + 3x_2 + x_3 = 10 \\
& \quad 5x_1 - 6x_2 + x_3 \leq 12 \\
& \quad 6x_1 + 7x_2 \geq 11 \\
& \quad x_1 \geq 0, \ x_3 \geq 0, \ x_4 \geq 0, \text{ w.r.s}
\end{align*}
\]

2. Consider the linear program, \(P \), given by

Maximise \(z = x_1 + 4x_2 + 3x_3 \)

subject to

\[
\begin{align*}
x_1 + 5x_2 + 4x_3 & \leq 14 \\
3x_1 + 2x_2 + x_3 & \leq 4 \\
\end{align*}
\]

with \(x_1, x_2 \) and \(x_3 \) non-negative.

(i) Write down \(D \), the dual of \(P \).

(ii) Solve \(P \) using the simplex algorithm.

(iii) Write down the optimal solution of \(D \).

3. Consider the linear program, \(P \), given by

Maximise \(z = x_1 - x_2 + 3x_3 \)

subject to

\[
\begin{align*}
2x_1 + x_2 + 5x_3 & \leq 6 \\
-3x_1 - 2x_2 + 4x_3 & \leq -3 \\
\end{align*}
\]

with \(x_1, x_2 \) and \(x_3 \) non-negative.

(i) Write down \(D \), the dual of \(P \).

(ii) Solve \(P \) using the simplex algorithm.

(iii) By observing the optimal tableau of \(P \), write down the optimal solution of \(D \). Verify that this is a feasible solution for \(D \).