\[\mathbb{E}(\text{Var}(X)) = \mathbb{E}(\frac{1}{\lambda^2}) = \frac{1}{\lambda^2} \]

Since \(\mathbb{E}(X) = \frac{1}{\lambda} \), we have
\[\mathbb{E}(\text{Var}(X)) = \frac{\mathbb{E}(X)}{\mathbb{E}(X)^2} = \frac{1}{\lambda^2} \]

and
\[\mathbb{E}(\text{Var}(X)) = \frac{1}{\lambda^2} \]

This means that the variance function of a Poisson process is constant.

An alternative approach: note that \(\lambda(x) \sim N(0, \sigma^2) \).

\[\lambda(x) \sim N(0, \sigma^2) \]

Thus,
\[\mathbb{E}(\lambda(x)) = 0 \]

and
\[\text{Var}(\lambda(x)) = \sigma^2 \]

By this reasoning (and, of course, we must also be licensed to translate.)

For this reason, as well as the symmetry, \(\lambda_t, \lambda_{t+1} \]

Solutions to HW-7:

- 1

Both the process and the above conditions are independent of increments.

\[\frac{2}{3} \lambda_t + \frac{1}{3} \lambda_{t+1} \]

since, due to stationarity,

\[\mathbb{E}(\text{Var}(X)) = \frac{1}{\lambda^2} \]

Since \(\mathbb{E}(X) = \frac{1}{\lambda} \), we have
\[\mathbb{E}(\text{Var}(X)) = \frac{\mathbb{E}(X)}{\mathbb{E}(X)^2} = \frac{1}{\lambda^2} \]

and
\[\mathbb{E}(\text{Var}(X)) = \frac{1}{\lambda^2} \]

This means that the variance function of a Poisson process is constant.

An alternative approach: note that \(\lambda(x) \sim N(0, \sigma^2) \).

\[\lambda(x) \sim N(0, \sigma^2) \]

Thus,
\[\mathbb{E}(\lambda(x)) = 0 \]

and
\[\text{Var}(\lambda(x)) = \sigma^2 \]

By this reasoning (and, of course, we must also be licensed to translate.)

For this reason, as well as the symmetry, \(\lambda_t, \lambda_{t+1} \]

Solutions to HW-7:

- 1

Since the process is stationary,

\[\frac{2}{3} \lambda_t + \frac{1}{3} \lambda_{t+1} \]
\[E_{\text{W}} = \frac{1}{2} E_T = 2 \]

so that

\[0 = E_{\text{W}}(\frac{1}{2}) = \frac{1}{2} E_T - E_{\text{F}} \]

so from (6),

\[E_{\text{W}} = E_{\text{F}} = 0 \]