1. Let $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and $B = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 < 1\}$. Determine whether $X = A \cup B$, $Y = \overline{A} \cup \overline{B}$ and $Z = \overline{A} \cup B$ are connected subsets of \mathbb{R}^2 with the usual topology. Explain your answers briefly.

Solution: (a) A and B are non-empty open subsets of \mathbb{R}^2, hence non-empty open subsets of X, with $A \cup B = X$ and $A \cap B = \emptyset$. Hence $X = A \cup B$ is disconnected.
(b) \overline{A}, \overline{B} are convex subsets of \mathbb{R}^2, hence path connected, hence connected. Since $A \cap B = \{(0,0)\} \neq \emptyset$, it follows that $Y = \overline{A} \cup \overline{B}$ is connected.
(c) $Z = \overline{A} \cup B$ contains the interval $C = [-1,3] \times \{0\}$ which intersects the connected sets \overline{A} and B. Hence $\overline{A} \cup C$, $B \cup C$ and $Z = (\overline{A} \cup C) \cup (B \cup C)$ are connected.

2. Let X be a connected topological space and let $f : X \rightarrow \mathbb{R}$ be a continuous function, where \mathbb{R} has the usual topology. Show that if f takes only rational values, i.e. $f(X) \subset \mathbb{Q}$, then f is a constant function.

Solution: Assume f is not constant, say $f(x) = a < f(y) = b$ for some $x, y \in X$. Then $f(X)$ is a connected subset of \mathbb{R}, so is an interval containing $[a,b]$. But thiscontains irrationals (e.g. $a + \frac{1}{\sqrt{2}}(b-a)$), contradicting the assumption that $f(X) \subset \mathbb{Q}$.

3. Prove that $X = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$ is not homeomorphic to \mathbb{R} (with the usual topologies). [Hint: consider the effect of removing points from X and \mathbb{R}.]

Solution: Removing any point x from \mathbb{R} gives two connected components for $\mathbb{R}\backslash\{x\}$, namely $(-\infty,x)$ and (x,∞). However, removing the origin $\{(0,0)\}$ from X gives 4 connected components: the positive x-axis, the negative x-axis, the positive y-axis and the negative y-axis. But any homeomorphism $f : X \rightarrow \mathbb{R}$ restricts to a homeomorphism g from $X \backslash \{(0,0)\}$ to $\mathbb{R} \backslash f(0,0)$, and g must preserve connected components – contradiction.

4. Prove that if X and Y are path connected, then $X \times Y$ is also path connected.

Solution: Let $(x_0,y_0), (x_1,y_1)$ be two points in $X \times Y$. Since X is path connected there is a continuous function $\alpha : [0,1] \rightarrow X$ such that $\alpha(0) = x_0$ and $\alpha(1) = x_1$. Since Y is path connected, there is a continuous function $\beta : [0,1] \rightarrow X$ such that $\beta(0) = y_0$ and $\beta(1) = y_1$. Combining these gives a function $\gamma = (\alpha, \beta) : [0,1] \rightarrow X \times Y$, $\gamma(t) = (\alpha(t), \beta(t))$, with $\gamma(0) = (x_0,y_0)$ and $\gamma(1) = (x_1,y_1)$. Further, γ is continuous since each component is continuous. Hence $X \times Y$ is path connected.

5. Let (X, T) be a Hausdorff topological space, and let T' be another topology on X with $T' \supseteq T$ and $T' \neq T$. Prove that (X, T') is not compact. [Hint: consider the identity map $f : X \rightarrow X$ with $f(x) = x$.]

Solution: The identity $f : (X, T') \rightarrow (X, T)$ is continuous since $T' \supseteq T$ and is a bijection. If (X, T') is compact and (X, T) Hausdorff, then f would be a homeomorphism. Hence $f^{-1} : (X, T) \rightarrow (X, T')$ would be continuous. But T' contains an open set U which is not in T, and $(f^{-1})^{-1}(U) = f(U) = U$ is not in T, contradicting the continuity of f^{-1}.

Solutions to Assignment 4.