Some solutions to Problem Set 10.

1. (a) Both H and L are closed in X since they are closed in \mathbb{R}^2. Since $H = X \setminus L$ and $L = X \setminus H$, they are also open in X. So X is disconnected.
(b) Every C_n is connected. Since all of the circles C_n, $n \in \mathbb{Z}$, have a common point $(0,0)$, the union is connected.

2. Note that A is a connected subset of B, and the closure of A in B is $\overline{A} \cap B = B$. But the closure of a connected set is connected by a theorem from class, hence B is connected.

3. Let $Y = A \cup B$ and assume that $f : Y \to \{0,1\}$ is continuous, where $\{0,1\}$ is given the discrete topology. We will show that f is constant. Since A is connected and $f|A$ is continuous, $f|A$ is constant, say $f(A) = \{0\}$. Let $x \in \overline{A} \cap B$. Then $x \in \overline{A} \cap Y$, which is the closure of A in Y. Now since f is continuous, $f(x) \in f(A) = \{0\} = \{0\}$. Hence $f(x) = 0$. But B is also connected and $f|B$ is continuous, hence $f|B$ is constant, and since $x \in B$ we must have $f(B) = 0$. Hence $f = 0$ on all of $A \cup B$, and $A \cup B$ is connected.

4. Let X be a topological space with a cut point, say $p \in X$, and let $f : X \to Y$ be a homeomorphism. We claim that $f(p)$ is a cut point of Y. Since $X \setminus \{p\}$ is disconnected, there are two disjoint sets U and V such that U and V are open in $X \setminus \{p\}$, $U \cup V = X \setminus \{p\}$. Then $g = f|_{X\setminus\{p\}} : X \setminus \{p\} \to Y \setminus \{f(p)\}$ is a homeomorphism, and so $g(U)$ and $g(V)$ are open in $Y \setminus \{f(p)\}$. But $g(U) \cap g(V) = \emptyset$, and $Y \setminus \{f(p)\} = g(U) \cup g(V)$. Hence $Y \setminus \{f(p)\}$ is disconnected, and $f(p)$ is a cut point of Y.

5. Consider (a,b) and (a,b). Assume that $f : (a,b) \to (a,b)$ is a homeomorphism. Let $c = f(b)$. Then c is a cut-point of (a,b). So by the previous problem, $f^{-1}(c) = b$ is a cut point of (a,b), that is $(a,b) \setminus \{b\} = (a,b)$ is disconnected, contradiction. The proof for (a,b) and $[a,b]$ is similar.

Consider (a,b) and $[a,b]$. Assume that $f : [a,b] \to (a,b)$ is a homeomorphism. Since f is one-one, one of the points $f(a)$, $f(b)$ belongs to (a,b). Say $f(a) \in (a,b)$. Then $f(a)$ is a cut point of (a,b) and so $f^{-1}(f(a))$ is a cut point of $[a,b]$. But $[a,b] \setminus \{f^{-1}(f(a))\} = [a,b] \setminus \{a\} = (a,b]$ which is connected, contradiction. Hence (a,b), and $[a,b]$ are not homeomorphic.

6. First notice that $\mathbb{R}^2 \setminus \{a\}$ is path connected since any two points $x, y \in \mathbb{R}^2 \setminus \{a\}$ can be joined by a continuous path. So $\mathbb{R}^2 \setminus \{a\}$ is connected. Assume now that \mathbb{R} and \mathbb{R}^2 are homeomorphic. Then there is a homeomorphism $f : \mathbb{R}^2 \to \mathbb{R}$. Denote $x = f(0,0)$. The map $g = f|_{\mathbb{R}^2 \setminus \{(0,0)\}} : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R} \setminus \{x\}$ is a homeomorphism. Since, by above, $\mathbb{R}^2 \setminus \{(0,0)\}$ is connected, $f(\mathbb{R}^2 \setminus \{(0,0)\}) = \mathbb{R} \setminus \{x\}$ is connected, contradiction.

7. Define $g : S^1 \to \mathbb{R}$ by $g(x) = f(x) - f(-x)$. Then g is continuous and $g(-x) = f(-x) - f(x) = -g(x)$, so if $g(x_0) \geq 0$, say, then $g(-x_0) \leq 0$. Since since S^1 is connected, the intermediate value theorem shows that there exists $x \in S^1$ such that $g(x) = 0$. But this means that $f(x) = f(-x)$ as required.
8. Take two distinct points \(x, y \in \mathbb{R}^2 \setminus A \). Since \(A \) is countable and there uncountably many lines passing through \(x \), there are uncountably many lines passing through \(x \) and containing no point of \(A \). Take one of such lines, say \(L \subseteq X \setminus A \). If the point \(y \) belongs to \(L \), then \(\alpha(t) = (1 - t)x + ty \in L \) for \(t \in [0, 1] \), \(\alpha(0) = x \), \(\alpha(1) = y \). Hence \(x \) and \(y \) can be connected by a continuous path in \(\mathbb{R}^2 \setminus A \). If \(y \notin L \), then there are uncountably many lines through \(y \) which don’t intersect \(A \) and are, in addition, not parallel to \(L \). Pick one of them, say \(K \). Then \(y \in K, K \subseteq \mathbb{R}^2 \setminus A \), and \(K \) intersects \(L \) at a point \(z \). Now let \(\alpha(t) = (1 - t)x + tz, \beta(t) = (1 - t)z + ty \) for \(t \in [0, 1] \). Then \(\alpha(t), \beta(t) \in \mathbb{R}^2 \setminus A, \alpha(0) = x, \alpha(1) = z, \beta(0) = z, \) and \(\beta(1) = y \). Finally, define

\[
\gamma(t) = \begin{cases}
\alpha(2t) & 0 \leq t \leq 1/2, \\
\beta(2t - 1) & 1/2 \leq t \leq 1.
\end{cases}
\]

Then \(\gamma \) is continuous by the gluing lemma, and is a path in \(\mathbb{R}^2 \setminus A \) joining \(x \) with \(y \).

9. Fix a point \(x_0 \in A \) and let \(U \) be the collection of all \(x \in A \) such that there is a path \(\alpha : [0, 1] \to A \) from \(x_0 \) to \(x \), that is \(\alpha(0) = x_0 \) and \(\alpha(1) = x \). The set \(U \) is not empty since \(x_0 \in U \), and we claim that \(U \) is open. Indeed, let \(x \in U \). Since \(A \) is open, there is a ball \(B(x, r) \) such that \(B(x, r) \subseteq A \). We will show that \(B(x, r) \subseteq U \).

Take \(y \in B(x, r) \). Then there is a continuous path \(\beta(t) = (1 - t)x + ty \in B(x, r), 0 \leq t \leq 1 \), joining \(x \) with \(y \). Since there is a continuous path \(\alpha : [0, 1] \to A \) such that \(\alpha(0) = x_0 \) and \(\alpha(1) = x \), the path defined by

\[
\gamma(t) = \begin{cases}
\alpha(2t) & 0 \leq t \leq 1/2, \\
\beta(2t - 1) & 1/2 \leq t \leq 1.
\end{cases}
\]

satisfies \(\gamma(0) = x_0, \gamma(1) = y, \gamma(t) \in A \) for all \(t \in [0, 1] \). Further, \(\gamma \) is continuous by the gluing lemma. So \(y \in U \), and \(B(x, r) \subseteq U \), and \(U \) is open.

Now \(V = A \setminus U \) be the collection of points \(x \in A \) which cannot be joined to \(x_0 \) by a continuous path in \(A \). Then \(V \) is open. To see this assume that \(x \in V \). Then \(B(x, r) \subseteq A \) for some \(r > 0 \). Any point \(y \in B(x, r) \) can be connected by a continuous path with \(x \), just take \(\beta(t) = (1 - t)y + t \). If \(y \) can be connected to \(x_0 \) by a continuous path, then \(x_0 \) can be connected by a continuous path with \(x \), contradiction. Hence \(B(x, r) \subseteq V \). Since \(A = U \cup V \) and \(U \cap V = \emptyset \), and \(A \) is connected, one of these sets has to be empty. Since \(x_0 \in U \), then \(V = \emptyset \). So \(A = U \), and the result follows.

10. Assume not. Then there is a continuous surjective function \(f : X \to \{0, 1\} \). We consider \(\{0, 1\} \) with the discrete metric \(d \). Since \((X, d_X) \) is compact, then \(f \) is uniformly continuous. Let \(0 < \varepsilon < 1 \). Then there is \(\delta > 0 \) such that if \(d_X(x, y) < \delta \), then \(d(f(x), f(y)) < \varepsilon \). Since \(f \) is a surjection, there are \(x \) and \(y \) in \(X \) such that \(f(x) = 0 \) and \(f(y) = 1 \). Since \(X \) is chain connected, there is a finite set of points \(x_0 = x, x_1, \ldots, x_{n-1}, x_n = y \) such that \(d_X(x_i, x_{i+1}) < \delta \) for \(0 \leq i \leq n - 1 \). Thus, \(d(f(x_i), f(x_{i+1})) < \varepsilon \) for \(0 \leq i \leq n - 1 \). Since \(d \) is the discrete metric and \(\varepsilon < 1 \), \(f(x_i) = f(x_{i+1}) \) for \(0 \leq i \leq n - 1 \). This means that \(f(x) = f(x_0) = f(x_1) = \cdots = f(x_{n-1}) = f(x_n) = f(y) \), contradicting \(f(x) = 0 \) and \(f(y) = 1 \). So \(X \) is connected.